Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Fish Dis ; 46(9): 977-986, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37294673

RESUMEN

Streptococcosis disease caused by Streptococcus agalactiae (Group B Streptococcus, GBS) results in a huge economic loss of tilapia culture. It is urgent to find new antimicrobial agents against streptococcosis. In this study, 20 medicinal plants were evaluated in vitro and in vivo to obtain medicinal plants and potential bioactive compounds against GBS infection. The results showed that the ethanol extracts of 20 medicinal plants had low or no antibacterial properties in vitro, with a minimal inhibitory concentration ≥256 mg/L. Interestingly, in vivo tests showed that 7 medicinal plants could significantly inhibit GBS infection in tilapia, and Sophora flavescens (SF) had the strongest anti-GBS activity in tilapia, reaching 92.68%. SF could significantly reduce the bacterial loads of GBS in different tissues (liver, spleen and brain) of tilapia after treated with different tested concentrations (12.5, 25.0, 50.0 and 100.0 mg/kg) for 24 h. Moreover, 50 mg/kg SF could significantly improve the survival rate of GBS-infected tilapia by inhibiting GBS replication. Furthermore, the expression of antioxidant gene cat, immune-related gene c-type lysozyme and anti-inflammatory cytokine il-10 in liver tissue of GBS-infected tilapia significantly increased after treated with SF for 24 h. Meanwhile, SF significantly reduced the expression of immune-related gene myd88 and pro-inflammatory cytokines il-8 and il-1ß in liver tissue of GBS-infected tilapia. The negative and positive models of UPLC-QE-MS, respectively, identified 27 and 57 components of SF. The major components of SF extract in the negative model were α, α-trehalose, DL-malic acid, D- (-)-fructose and xanthohumol, while in the positive model were oxymatrine, formononetin, (-)-maackiain and xanthohumol. Interestingly, oxymatrine and xanthohumol could significantly inhibit GBS infection in tilapia. Taken together, these results suggest that SF can inhibit GBS infection in tilapia, and it has potential for the development of anti-GBS agents.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Plantas Medicinales , Infecciones Estreptocócicas , Tilapia , Animales , Sophora flavescens , Streptococcus agalactiae/genética , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/microbiología , Infecciones Estreptocócicas/tratamiento farmacológico , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Tilapia/microbiología , Citocinas , Cíclidos/microbiología
2.
J Fish Dis ; 45(6): 815-823, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35315084

RESUMEN

Streptococcus agalactiae, also known as Group B Streptococcus (GBS), can infect humans, terrestrial animals and fish. The emergence of bacterial resistance of S. agalactiae to antibiotics leads to an urgent need of exploration of new antimicrobial agents. In the study, the antibacterial activity of natural component plumbagin (PLB) against S. agalactiae was investigated in vitro and in vivo. The results showed that the minimal inhibitory concentration (MIC) of PLB against S. agalactiae was 8 mg/L. The growth curve assay revealed that PLB could inhibit the growth of S. agalactiae. In addition, the time-killing curve showed that S. agalactiae was killed almost completely by 2-fold MIC of PLB within 12 h. Transmission electron microscopy results showed obvious severe morphological destruction and abnormal cells of S. agalactiae after treated with PLB. The pathogenicity of S. agalactiae to zebrafish was significantly decreased after preincubation with PLB for 2 h in vitro, further indicating the bactericidal activity of PLB. Interestingly, PLB could kill S. agalactiae without inducing resistance development. Furthermore, pretreatment and post-treatment assays suggested that PLB also exhibited the antibacterial activity against S. agalactiae infection in vivo by effectively reducing the bacterial load and improving the survival rate of S. agalactiae-infected zebrafish. In summary, PLB had potent antibacterial activity against S. agalactiae in vitro and in vivo, and it could be an excellent antimicrobial candidate to prevent and control S. agalactiae infection.


Asunto(s)
Enfermedades de los Peces , Infecciones Estreptocócicas , Animales , Antibacterianos/farmacología , Enfermedades de los Peces/microbiología , Naftoquinonas , Infecciones Estreptocócicas/tratamiento farmacológico , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/veterinaria , Streptococcus agalactiae , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA