Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Hazard Mater ; 470: 134232, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593666

RESUMEN

In a 120-day microcosm incubation experiment, we investigated the impact of arsenic contamination on soil microbial nutrient metabolism, focusing on carbon cycling processes. Our study encompassed soil basal respiration, key enzyme activities (particularly, ß-1,4-N-acetylglucosaminidase and phosphatases), microbial biomass, and community structure. Results revealed a substantial increase (1.21-2.81 times) in ß-1,4-N-acetylglucosaminidase activities under arsenic stress, accompanied by a significant decrease (9.86%-45.20%) in phosphatase activities (sum of acid and alkaline phosphatases). Enzymatic stoichiometry analysis demonstrated the mitigation of microbial C and P requirements in response to arsenic stress. The addition of C-sources alleviated microbial C requirements but exacerbated P requirements, with the interference amplitude increasing with the complexity of the C-source. Network analysis unveiled altered microbial nutrient requirements and an increased resistance process of microbes under arsenic stress. Microbial carbon use efficiency (CUE) and basal respiration significantly increased (1.17-1.59 and 1.18-3.56 times, respectively) under heavy arsenic stress (500 mg kg-1). Arsenic stress influenced the relative abundances of microbial taxa, with Gemmatimonadota increasing (5.5-50.5%) and Bacteroidota/ Nitrospirota decreasing (31.4-47.9% and 31.2-63.7%). Application of C-sources enhanced microbial resistance to arsenic, promoting cohesion among microorganisms. These findings deepen our understanding of microbial nutrient dynamics in arsenic-contaminated areas, which is crucial for developing enzyme-based toxicity assessment systems for soil arsenic contamination.


Asunto(s)
Arsénico , Carbono , Microbiología del Suelo , Contaminantes del Suelo , Arsénico/metabolismo , Arsénico/toxicidad , Carbono/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Fósforo/metabolismo , Suelo/química
2.
Sci Total Environ ; 912: 168972, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38043822

RESUMEN

The response of the microbes to total petroleum hydrocarbons (TPHs) in three types of oilfield soils was researched using metagenomic analysis. The ranges of TPH concentrations in the grassland, abandoned well, working well soils were 1.16 × 102-3.50 × 102 mg/kg, 1.14 × 103-1.62 × 104 mg/kg, and 5.57 × 103-3.33 × 104 mg/kg, respectively. The highest concentration of n-alkanes and 16 PAHs were found in the working well soil of Shengli (SL) oilfield compared with those in Nanyang (NY) and Yanchang (YC) oilfields. The abandoned well soils showed a greater extent of petroleum biodegradation than the grassland and working well soils. Α-diversity indexes based on metagenomic taxonomy showed higher microbial diversity in grassland soils, whereas petroleum-degrading microbes Actinobacteria and Proteobacteria were more abundant in working and abandoned well soils. RDA demonstrated that low moisture content (MOI) in YC oilfield inhibited the accumulation of the petroleum-degrading microbes. Synergistic networks of functional genes and Spearman's correlation analysis showed that heavy petroleum contamination (over 2.10 × 104 mg/kg) negatively correlated with the abundance of the nitrogen fixation genes nifHK, however, in grassland soils, low petroleum content facilitated the accumulation of nitrogen fixation genes. A positive correlation was observed between the abundance of petroleum-degrading genes and denitrification genes (bphAa vs. nirD, todC vs. nirS, and nahB vs. nosZ), whereas a negative correlation was observed between alkB (alkane- degrading genes) and amo (ammonia oxidation), hao (nitrification). The ecotoxicity of petroleum contamination, coupled with petroleum hydrocarbons (PH) degradation competing with nitrifiers for ammonia inhibited ammonia oxidation and nitrification, whereas PH metabolism promoted the denitrification process. Moreover, positive correlations were observed between the abundance of amo gene and MOI, as well as between the abundance of the dissimilatory nitrate reduction gene nirA and clay content. Thus, improving the soil physicochemical properties is a promising approach for decreasing nitrogen loss and alleviating petroleum contamination in oilfield soils.


Asunto(s)
Petróleo , Contaminantes del Suelo , Petróleo/análisis , Yacimiento de Petróleo y Gas , Suelo/química , Amoníaco/análisis , Biodegradación Ambiental , Hidrocarburos/análisis , Alcanos , Microbiología del Suelo , Contaminantes del Suelo/análisis
3.
Front Vet Sci ; 9: 882754, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812848

RESUMEN

In order to study the regulation of Fenugreek seed extract (FSE) on the immunity of broilers, and explore the appropriate amount of FSE in broilers' production, 1-day-old yellow feather broilers with a total of 420 birds were randomly allocated into seven treatments. Each treatment had six replicates, with 10 birds per replicate. The two control groups were the basic fodder group fed with basal diet and the bacitracin zinc group added 30 mg/kg bacitracin zinc to the basal diet. Experimental groups included five levels of FSE (50, 100, 200, 400, and 800 mg/kg FSE to the basal diet, respectively). The pre-test period was 7 days and the formal test lasted for 56 days. The results showed that the average daily gain (ADG) of 50 and 800 mg/kg FSE groups was significantly increased (P < 0.01), and the feed to gain ratio (F/G) of FSE groups was significantly decreased (P < 0.01) compared with the basic fodder and the bacitracin zinc groups. Compared with the basic fodder group, the serum total cholesterol (TC) content in the FSE groups was significantly decreased (P < 0.05), the serum low density lipoprotein cholesterol (LDL-C) content of 50, 100, and 800 mg/kg FSE groups was significantly lower than that of the basic fodder group (P < 0.05). Compared with the basic fodder and bacitracin zinc groups, the serum immunoglobulins (IgG, IgM, IgA) content of 100 and 200 mg/kg FSE groups were significantly increased (P < 0.05). Compared with the bacitracin zinc group, the serum interleukins (IL-1, IL-10) content of 400 mg/kg FSE group were significantly increased (P ≤ 0.05), and the serum interferon-γ (IFN-γ) content of 100 and 200 mg/kg FSE groups was significantly increased (P < 0.05). Compared with the basic fodder group, the lower doses (0-400 mg/kg) of FSE had no significant effect on the mRNA expression of toll-like receptors 4/ myeloid differentiation factor 88/ nuclear factor-κB (TLR4/MyD88/NF-κB) signaling pathways (P > 0.05). The 800 mg/kg FSE treatment group significantly increased the expression levels of nuclear factor-κB (NF-κB) mRNA in the spleen of broilers (P < 0.05). The zinc bacitracin group significantly increased the expression levels of myeloid differentiation factor 88 (MyD88) and nuclear factor-κB (NF-κB) mRNA (P ≤ 0.05). The results showed that FSE could promote the secretion of immunoglobulins, regulate the body's cytokines, and have a positive effect on immunity in broilers. Furthermore, the recommended supplement of FSE is 100 mg/kg in the broiler diet.

4.
Sci Total Environ ; 774: 145728, 2021 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-33610991

RESUMEN

Arsenate [As(V)], in general, is associated with various aggregates and exists as different species in soil, which in turn influences its toxicity and potential contamination. Previous studies have demonstrated the usefulness of alkaline phosphatases (ALP) to evaluate As(V) pollution. However, the effect of different arsenic fractions on ALP among soil aggregates is still unclear. Thus, the distribution of As fractions and ALP kinetics was determined in four-month As-aged paddy soil aggregates. Results revealed the two major fractions of As in aggregates were humic-bound and Fe and Mn oxides-bound [both around 30% under 800 mg kg-1 of As(V)]. Besides, it was observed that available soil phosphorus could positively affect the relative content of water-soluble, exchangeable and carbonate-bound arsenic. In the kinetics experiment, both the Michaelis-Menten constant (Km) and maximum reaction velocity (Vmax) of ALP increased with increasing As(V) concentration under four months ageing for each size aggregate. Multiple linear stepwise regression analysis between kcat and the relative content of arsenic fraction indicated that carbonate-bound arsenic is the main fraction that inhibited the kcat for macroaggregates (> 0.25 mm size). For soil aggregates of 0.1-0.25 mm size, kcat increased with an increase in arsenic residual fraction. As for aggregates <0.1 mm size, Fe and Mn oxide-bound fraction is the main fraction that inhibited the kcat. Overall, this study suggests carbonate-bound and Fe and Mn oxide-bound arsenic fractions could decrease the ALP activities via a decrease in the catalytic efficiency in macroaggregates and <0.1 mm size aggregates, respectively. Besides, available phosphorus should be considered as the main factor when assessing As biotoxicity and mobility.


Asunto(s)
Arsénico , Contaminantes del Suelo , Fosfatasa Alcalina , Arsénico/análisis , Arsénico/toxicidad , Fósforo , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
5.
Chemosphere ; 236: 124355, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31325832

RESUMEN

Soil as a heterogeneous mass is composed of different size aggregates. The distribution of different arsenic (As) fractions in soil aggregates is vital to assess the potential risk of As pollution. In this study, soil samples were aged for 4 months with different arsenate [As(V)] concentrations. Dry sieving method was used to obtain five different size aggregates and the content of As in these fractions was determined. The results showed that P4 (0.1-0.25 mm) contained the highest organic matter (OM) than other size aggregates. After 4 months of ageing, available phosphorus (AP) content increased with the increase of As(V) concentration among 5 aggregates. The distribution of different arsenic fractions among 5 aggregates was similar. The relative contents of water-soluble (F1), exchangeable (F2) and carbonate (F3) fractions increased with the increase in As concentration, while the residual fraction (F7) decreased sharply. Humic-bound (F4), and Fe and Mn oxide bound fractions (F5) were about 35% and 20% respectively, after 4 months of As(V) ageing. Generally, the alkaline phosphatase (ALP) activities of P4 were lowest among five aggregates under each concentration of As(V). Moreover, F2 and F3 exhibited a strong inhibition of ALP activity. This study demonstrates that not only water-soluble and exchangeable arsenic but also humic-bound fraction should be considered when assessing As bioavailability and toxicity.


Asunto(s)
Fosfatasa Alcalina/análisis , Arsénico/análisis , Contaminantes del Suelo/análisis , Suelo/química , Disponibilidad Biológica , Carbonatos/análisis , Fósforo/análisis , Agua
6.
Chemosphere ; 196: 214-222, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29304459

RESUMEN

Both elevated temperature and heavy metal contamination can have profound effects on microbial function and soil biogeochemical cycling. However, the interactive effects of heavy metal toxicity and temperature on microbial activity have been poorly understood. The aim of this study was to quantify the effect of temperature and cadmium (Cd) toxicity on alkaline phosphatase (ALP) produced by microbes to acquire phosphorus. To determine whether these effects were dependent on soil properties, we utilized 11 soil types from cropland throughout China. We measured ALP activities and kinetics across a temperature (17, 27, 37, and 47 °C) and Cd concentration gradient (0, 0.6, 5, 25, 50, 100, 200, 300, and 500 mg kg-1). We found that the half saturation constant (Km) and the velocity constant (k) of ALP increased nonlinearly with temperature across all soil types. However, the maximum reaction velocity (Vmax) increased linearly with temperature. Regardless of soil type and temperature, Cd had a non-competitive inhibitory mechanism. Soil pH, TOC, and clay content were the major factors controlling the affinity of ALP for Cd (Ki). The ecology dose (ED50) for Vmax and k, and Ki were negatively related to temperature, indicating that the toxicity of Cd on ALP is temperature-dependent. Additionally, higher temperatures led to more inhibition of Cd on ALP activity in alkaline soils than that in acidic and neutral soils. Our results suggest that global warming might accelerate the deficiency of available phosphorus in Cd contaminated soils due to higher inhibition of Cd on ALP activity, particularly in alkaline soils.


Asunto(s)
Fosfatasa Alcalina/química , Cadmio/química , Contaminantes del Suelo/química , Cadmio/toxicidad , China , Contaminación Ambiental , Cinética , Metales Pesados/análisis , Modelos Químicos , Fósforo , Suelo/química , Contaminantes del Suelo/análisis , Temperatura
7.
Ecotoxicol Environ Saf ; 147: 266-274, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28850809

RESUMEN

Soil phosphatase, which plays an important role in phosphorus cycling, is strongly inhibited by Arsenic (As). However, the inhibition mechanism in kinetics is not adequately investigated. In this study, we investigated the kinetic characteristics of soil acid phosphatase (ACP) in 14 soils with varied properties, and also explored how kinetic properties of soil ACP changed with different spiked As concentrations. The results showed that the Michaelis constant (Km) and maximum reaction velocity (Vmax) values of soil ACP ranged from 1.18 to 3.77mM and 0.025-0.133mMh-1 in uncontaminated soils. The kinetic parameters of soil ACP in different soils changed differently with As contamination. The Km remained unchanged and Vmax decreased with increase of As concentration in most acid and neutral soils, indicating a noncompetitive inhibition mechanism. However, in alkaline soils, the Km increased linearly and Vmax decreased with increase of As concentration, indicating a mixed inhibition mechanism that include competitive and noncompetitive. The competitive inhibition constant (Kic) and noncompetitive inhibition constant (Kiu) varied among soils and ranged from 0.38 to 3.65mM and 0.84-7.43mM respectively. The inhibitory effect of As on soil ACP was mostly affected by soil organic matter and cation exchange capacity. Those factors influenced the combination of As with enzyme, which resulted in a difference of As toxicity to soil ACP. Catalytic efficiency (Vmax/Km) of soil ACP was a sensitive kinetic parameter to assess the ecological risks of soil As contamination.


Asunto(s)
Fosfatasa Ácida/antagonistas & inhibidores , Arsénico/toxicidad , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/toxicidad , Suelo/química , China , Concentración de Iones de Hidrógeno , Cinética , Modelos Teóricos , Fósforo/análisis , Suelo/normas
8.
ScientificWorldJournal ; 2014: 535768, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25610908

RESUMEN

Here the spatial distribution of soil enzymatic properties in agricultural land was evaluated on a county-wide (567 km(2)) scale in Changwu, Shaanxi Province, China. The spatial variations in activities of five hydrolytic enzymes were examined using geostatistical methods. The relationships between soil enzyme activities and other soil properties were evaluated using both an integrated total enzyme activity index (TEI) and the geometric mean of enzyme activities (GME). At the county scale, soil invertase, phosphatase, and catalase activities were moderately spatially correlated, whereas urease and dehydrogenase activities were weakly spatially correlated. Correlation analysis showed that both TEI and GME were better correlated with selected soil physicochemical properties than single enzyme activities. Multivariate regression analysis showed that soil OM content had the strongest positive effect while soil pH had a negative effect on the two enzyme activity indices. In addition, total phosphorous content had a positive effect on TEI and GME in orchard soils, whereas alkali-hydrolyzable nitrogen and available potassium contents, respectively, had negative and positive effects on these two enzyme indices in cropland soils. The results indicate that land use changes strongly affect soil enzyme activities in agricultural land, where TEI provides a sensitive biological indicator for soil quality.


Asunto(s)
Enzimas/análisis , Suelo/química , China , Jardinería , Nitrógeno/análisis , Fósforo/análisis , Potasio/análisis , Control de Calidad , Suelo/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA