Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Res Int ; 2022: 6825576, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782081

RESUMEN

Objective: Artificial intelligence-powered screening systems of coronavirus disease 2019 (COVID-19) are urgently demanding since the ongoing outbreak of SARS-CoV-2 worldwide. Chest CT or X-ray is not sufficient to support the large-scale screening of COVID-19 because mildly-infected patients do not have imaging features on these images. Therefore, it is imperative to exploit supplementary medical imaging strategies. Traditional Chinese medicine has played an essential role in the fight against COVID-19. Methods: In this paper, we conduct two kinds of verification experiments based on a newly-collected multi-modality dataset, which consists of three types of modalities: tongue images, chest CT scans, and X-ray images. First, we study a binary classification experiment on tongue images to verify the discriminative ability between COVID-19 and non-COVID-19. Second, we design extensive multimodality experiments to validate whether introducing tongue image can improve the screening accuracy of COVID-19 based on chest CT or X-ray images. Results: Tongue image screening of COVID-19 showed that the accuracy (ACC), sensitivity (SEN), specificity (SPEC), and Matthew correlation coefficient (MCC) of the improved AlexNet and Googlenet both reached 98.39%, 98.97%, 96.67%, and 99.11%. The fusion of chest CT and tongue images used a tandem multimodal classifier fusion strategy to achieve optimal classification, and the results and screening accuracy of COVID-19 reached 98.98%, resulting in a significant improvement of 4.75% the highest accuracy in 375 years compared with the single-modality model. The fusion of chest x-rays and tongue images also had good classification accuracy. Conclusions: Both experimental results demonstrate that tongue image not only has an excellent discriminative ability for screening COVID-19 but also can improve the screening accuracy based on chest CT or X-rays. To the best of our knowledge, it is the first work that verifies the effectiveness of tongue image on screening COVID-19. This paper provides a new perspective and a novel solution that contributes to large-scale screening toward fast stopping the pandemic of COVID-19.


Asunto(s)
Inteligencia Artificial , COVID-19 , COVID-19/diagnóstico por imagen , Humanos , Medicina Tradicional China , SARS-CoV-2 , Lengua/diagnóstico por imagen
2.
RSC Adv ; 11(42): 26008-26015, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35479454

RESUMEN

The theory of cold-hot nature of Chinese herbal medicines (CHMs) is the core theory of CHM. It has been found that the volatile oil ingredients in CHMs are closely related to their cold-hot nature. Guided by the scientific hypothesis that "CHMs with similar component substances should have similar medicinal natures", exploration of the intelligent identification of the cold-hot nature of CHMs based on the similarity of their volatile oil ingredients has become a research focus. Gas chromatography (GC) chemical fingerprints have been widely used in the separation of volatile oil ingredients to analyze the cold-hot nature of CHMs. To verify the above hypothesis, in this work, we study the quantification of the similarity of the volatile oil ingredients of CHMs to their fingerprint similarity and explore the relationship between the volatile oil ingredients of CHMs and their cold-hot nature. In this study, we utilize GC technology to analyze the chemical ingredients of 61 CHMs that have a clear cold-hot nature (including 30 'cold' CHMs and 31 'hot' CHMs). Using the constructed fingerprint dataset of CHMs, a distance metric learning algorithm is applied to measure the similarity of the GC fingerprints. Furthermore, an improved k-nearest neighbor (kNN) algorithm is proposed to build a predictive identification model to identify the cold-hot nature of CHMs. The experimental results prove our inference that CHMs with similar component substances should have similar medicinal natures. Compared with existing classical models, the proposed identification scheme has better predictive performance. The proposed prediction model is proved to be effective and feasible.

3.
Genome ; 61(2): 91-102, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29338341

RESUMEN

Amomum villosum Lour. is an important Chinese medicinal plant that has diverse medicinal functions, and mainly contains volatile terpenes. This study aims to explore the WRKY transcription factors (TFs) and terpene synthase (TPS) unigenes that might be involved in terpene biosynthesis in A. villosum, and thus providing some new information on the regulation of terpenes in plants. RNA sequencing of A. villosum induced by methyl jasmonate (MeJA) revealed that the WRKY family was the second largest TF family in the transcriptome. Thirty-six complete WRKY domain sequences were expressed in response to MeJA. Further, six WRKY unigenes were highly correlated with eight deduced TPS unigenes. Ultimately, we combined the terpene abundance with the expression of candidate WRKY TFs and TPS unigenes to presume a possible model wherein AvWRKY61, AvWRKY28, and AvWRKY40 might coordinately trans-activate the AvNeoD promoter. We propose an approach to further investigate TF unigenes that might be involved in terpenoid biosynthesis, and identified four unigenes for further analyses.


Asunto(s)
Acetatos/farmacología , Transferasas Alquil y Aril/genética , Amomum/genética , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas , Oxilipinas/farmacología , Factores de Transcripción/genética , Amomum/efectos de los fármacos , Amomum/enzimología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Análisis de Secuencia de ARN , Terpenos/metabolismo
4.
Plant Mol Biol ; 87(6): 645-54, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25744207

RESUMEN

Temperature-induced lipocalins (TIL) are plasmalemma-localized proteins and responsive to environmental stresses. Physiological functions of MfTIL1 from Medicago sativa subsp. falcata (L.) Arcang. (hereafter falcata), a forage legume with cold and drought tolerance, were investigated in this study. MfTIL1 expression was greatly induced by 4-96 h of cold treatment, while transcript levels of the orthologs in Medicago truncatula, a model legume plant with lower cold tolerance than falcata, were reduced or not altered within 48-96 h. MfTIL1 expression was not responsive to dehydration and salinity. Compared to the wild type, transgenic tobacco plants overexpressing MfTIL1 had lower temperature (LT50) that resulted in 50 % lethal and elevated survival rate in response to freezing, elevated F v/F m and decreased ion leakage after treatments with chilling, high light and methyl viologen (MV). H2O2 and O2 (-) were less accumulated in transgenic plants than in the wild type after treatments with chilling, high light and MV, while antioxidant enzyme activities showed no difference between the two types of plants prior to or following treatments. Higher transcript levels of NtDREB3 and NtDREB4 genes were observed in transgenic plants than in the wild type under non-stressed conditions, but higher transcript levels of NtDREB1, NtDREB2, NtDREB4 and NtCOR15a genes under chilling conditions. It is suggested that MfTIL1 plays an important role in plant tolerance to cold and oxidative stress through promoted scavenging of reactive oxygen species and up-regulating expression of multiple cold responsive genes.


Asunto(s)
Aclimatación , Regulación de la Expresión Génica de las Plantas , Lipocalinas/genética , Medicago/fisiología , Nicotiana/fisiología , Secuencia de Aminoácidos , Antioxidantes/metabolismo , Frío , ADN Complementario/genética , Expresión Génica , Genes Reporteros , Peróxido de Hidrógeno/metabolismo , Lipocalinas/metabolismo , Medicago/genética , Datos de Secuencia Molecular , Cebollas/citología , Cebollas/genética , Cebollas/metabolismo , Estrés Oxidativo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno/metabolismo , Alineación de Secuencia , Nicotiana/genética
5.
Physiol Plant ; 153(3): 355-64, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25131886

RESUMEN

A full length cDNA encoding a myo-inositol transporter-like protein, named as MfINT-like, was cloned from Medicago sativa subsp. falcata (herein falcata), a species with greater cold tolerance than alfalfa (M. sativa subsp. sativa). MfINT-like is located on plasma membranes. MfINT-like transcript was induced 2-4 h after exogenous myo-inositol treatment, 24-96 h with cold, and 96 h by salinity. Given that myo-inositol accumulates higher in falcata after 24 h of cold treatment, myo-inositol is proposed to be involved in cold-induced expression of MfINT-like. Higher levels of myo-inositol was observed in leaves of transgenic tobacco plants overexpressing MfINT-like than the wild-type but not in the roots of plants grown on myo-inositol containing medium, suggesting that transgenic plants had higher myo-inositol transport activity than the wild-type. Transgenic plants survived better to freezing temperature, and had lower ion leakage and higher maximal photochemical efficiency of photosystem II (Fv /Fm ) after chilling treatment. In addition, greater plant fresh weight was observed in transgenic plants as compared with the wild-type when plants were grown under drought or salinity stress. The results suggest that MfINT-like mediated transport of myo-inositol is associated with plant tolerance to abiotic stresses.


Asunto(s)
Aclimatación , Regulación de la Expresión Génica de las Plantas , Inositol/farmacología , Medicago sativa/genética , Nicotiana/genética , Secuencia de Bases , Frío , ADN Complementario/genética , Sequías , Inositol/metabolismo , Datos de Secuencia Molecular , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Salinidad , Análisis de Secuencia de ADN , Estrés Fisiológico , Nicotiana/efectos de los fármacos , Nicotiana/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA