Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomater Adv ; 149: 213418, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37062124

RESUMEN

With excellent biocompatibility, stable chemical and optical properties, small organic molecules-based agents have always been a research hotspot in cancer photothermal therapy (PTT). In this work, a novel croconic acid-based molecule (CR) was designed and synthesized as an ideal photothermal agent (PTA), which showed abundant near-infrared (NIR) light absorption, high photothermal conversion ability, and excellent photothermal stability. By loading CR and quercetin (Qu) in CaO2, and coated with DSPE-PEG2000, a multifunctional theranostic nanoparticle (CCQ) was successfully prepared for calcium overloading mitochondrial metabolism inhibition synergetic mild PTT. Upon entering tumor microenvironment, CCQ can produce abundant H2O2 and a large amount of calcium ions, which lead to the imbalance of calcium concentration in the internal environment of tumor cells and induced mitochondrial apoptosis. With the existence of Qu, CCQ can effectively inhibit the expression of heat shock proteins (Hsp) during the PTT process, which weaken the heat resistance of tumors, ablate tumors at lower temperature (~45 °C), and reduce the damage to normal tissues. Guided by photoacoustic imaging (PAI), CCQ showed excellent multimodal therapeutic effect of tumors. This study provided a novel CR organic molecule-based theranostic nanoplatform that can be used to treat tumors via calcium overload therapy synergetic PTT at safe temperatures, which has promising potential for the future clinical cancer treatment.


Asunto(s)
Neoplasias , Fototerapia , Humanos , Fototerapia/métodos , Quercetina/farmacología , Quercetina/uso terapéutico , Terapia Fototérmica , Peróxido de Hidrógeno , Neoplasias/terapia , Neoplasias/patología , Microambiente Tumoral
2.
Oxid Med Cell Longev ; 2022: 6256450, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36583098

RESUMEN

This study is an attempt to evaluate the therapeutic effect of the ethanolic extract of Lindera aggregata on the liver and intestinal microbiota in rats with alcohol-induced liver injury (ALI). Rats were treated with 70 mg probiotics, 1 g/kg, 2 g/kg, and 3 g/kg ethanolic extract of Lindera aggregata, respectively, for 10 days. We found that Lindera aggregata could significantly reduce the biochemical parameters in the serum of ALD rats. Lindera aggregata alleviates oxidative stress and inflammation by upregulating SIRT1 and Nrf2 and downregulating COX2 and NF-κB. The results of 16S rRNA gene sequencing showed that the medium dose of Lindera aggregata had the best effect on the growth of beneficial bacteria. Diversity analysis and LEfSe analysis showed that beneficial bacteria gradually occupied the dominant niche. The relative abundance of potential pathogens in the gut decreased significantly. We demonstrated that the ethanolic extract of Lindera aggregata can alleviate the oxidative stress and inflammation induced by alcohol through the SIRT1/Nrf2/NF-κB pathway and can modulate the disturbance of gut microbiota induced by alcohol intake.


Asunto(s)
Microbioma Gastrointestinal , Lindera , Extractos Vegetales , Animales , Ratas , Disbiosis/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lindera/química , Hígado/metabolismo , Hígado/fisiopatología , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , ARN Ribosómico 16S/metabolismo , Sirtuina 1/metabolismo
3.
Acta Biomater ; 152: 546-561, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36031034

RESUMEN

The development of new diagnostic imaging and precise treatment methods for glioblastoma multiforme (GBM) is significant to improve patients' quality of life and prolong their survival time. Herein, we proposed a photoacoustic imaging (PAI)-guided GBM high-efficient photothermal therapy (PTT) based on a second near-infrared (NIR-II) absorptive polymer (PDTP-TBZ) conjugated with intense electron donor dithienopyrrole (DTP) and strong electron acceptor thiadiazolobenzotriazole (TBZ). By nanoprecipitation, PDTP-TBZ can form into nanoparticles (PT NPs), and c(RGDfK) cyclic peptide with integrin-specific targeting was then modified on the surface of PT NPs to obtain the ability of active targeting GBM multifunctional nano-reagent (cRGD@PT NPs). Both in vitro and in vivo experiments demonstrated that cRGD@PT NPs as NIR-II GBM phototheranostic reagents can greatly improve the enrichment rate at tumor sites under PAI monitoring, and carry out precise NIR-II PTT with high effective tumor cell phototoxicity and high biological safety. Thus, cRGD@PT NPs have great potential for the future GBM phototheranostic application in clinic. STATEMENT OF SIGNIFICANCE: In this work, we successfully constructed an intense electron donor dithienopyrrole (DTP) with a strong electron acceptor thiadiazolobenzotriazole (TBZ) into a novel NIR-II optical absorptive conjugated polymer (PDTP-TBZ). Then, the c(RGDfK) cyclic peptide was modified on the surface of PT NPs to obtain multifunctional nanodiagnostic reagents (cRGD@PT NPs) that can effectively target GBM neovascularization and tumor cells. Both in vitro and in vivo experiments demonstrate that cRGD@PT NPs possess high photothermal conversion efficiency and practical photoacoustic imaging capability under 1064 nm laser irradiation. The results of this work suggested that cRGD@PT NPs have great potential in efficient NIR-II PTT guided by accurate PAI, which provide a good perspective for the treatment and diagnosis of GBM.


Asunto(s)
Glioblastoma , Técnicas Fotoacústicas , Diagnóstico por Imagen , Glioblastoma/diagnóstico por imagen , Glioblastoma/terapia , Humanos , Integrinas , Péptidos Cíclicos/farmacología , Técnicas Fotoacústicas/métodos , Fototerapia , Terapia Fototérmica , Polímeros/farmacología , Calidad de Vida
4.
Adv Healthc Mater ; 11(17): e2200962, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35735086

RESUMEN

Triple-negative breast cancer (TNBC) presents special biological behavior and clinicopathological characteristics and leads to a worse prognosis than other types of breast cancer. The development of an effective therapeutic method is significant to improve the survival rate of TNBC cancer patients. In this work, an engineered red blood cell membrane (RBCm)-coating salidroside/indocyanine green nanovesicle (ARISP) is successfully prepared for hypoxic targeting phototherapy of TNBC. Salidroside in ARISP effectively ameliorates hypoxia-induced tumorigenesis by downregulating the expression of hypoxia-inducible factor 1α (HIF-1α), which increases the killing effect of reactive oxygen species on tumor cells during photodynamic therapy (PDT) using the photosensitizer indocyanine green. Besides, ARISP has an anti-LDLR modified RBCm-coating that extends its circulation time in the blood and escapes from immune surveillance and enhances hypoxia-targeted cellular uptake via the overexpressed LDLR receptor in hypoxic tumor sites. Moreover, guided by near-infrared fluorescence imaging and photoacoustic imaging, ARISP can eliminate tumors via high-efficiency phototherapy and inhibit lung and liver metastasis in TNBC models. Cytotoxicity assay of ARISP indicates the excellent biocompatibility with normal cells and tissues. This study provides fulfilling insights into the anticancer mechanism of reducing HIF-1α for enhanced PDT and has a promising therapeutic potential for TNBC treatment.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Neoplasias de la Mama Triple Negativas , Línea Celular Tumoral , Membrana Eritrocítica , Glucósidos , Humanos , Hipoxia , Verde de Indocianina/uso terapéutico , Nanopartículas/uso terapéutico , Fenoles , Fotoquimioterapia/métodos , Fototerapia/métodos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA