Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Environ Pollut ; 333: 122061, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37330190

RESUMEN

The Athabasca oil sands region (AOSR) of Alberta, Canada is notable for its considerable unconventional petroleum extraction projects, where bitumen is extracted from naturally-occurring oil sands ore. The large scale of these heavy crude oil developments raises concerns because of their potential to distribute and/or otherwise influence the occurrence, behaviour, and fate of environmental contaminants. Naphthenic acids (NAs) are one such contaminant class of concern in the AOSR, so studies have examined the occurrence and molecular profiles of NAs in the region. We catalogued the spatiotemporal occurrence and characteristics of NAs in boreal wetlands in the AOSR over a 7-year period, using derivatized liquid chromatography-tandem mass spectrometry (LC-MS/MS). Comparing median concentrations of NAs across these wetlands revealed a pattern of NAs suggesting NAs in surface waters derived from oil sands deposits. Opportunistic wetlands that formed adjacent to reclaimed overburden and other reclamation activities had the highest concentrations of NAs and consistent patterns suggestive of bitumen-derived inputs. However, similar patterns in the occurrence of NAs were also observed in undeveloped natural wetlands located above the known surface-mineable oil sands deposit that underlies the region. Intra-annual sampling results along with inter-annual comparisons across wetlands demonstrated that differences in the spatial and temporal NA concentrations were dependent on local factors, particularly when naturally occurring oil sands ores were observed in the wetland or drainage catchment.


Asunto(s)
Petróleo , Contaminantes Químicos del Agua , Alberta , Yacimiento de Petróleo y Gas , Humedales , Cromatografía Liquida , Espectrometría de Masas en Tándem , Petróleo/análisis , Ácidos Carboxílicos/análisis , Contaminantes Químicos del Agua/análisis
2.
Chemosphere ; 292: 133415, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34953875

RESUMEN

Negative ion electrospray Orbitrap mass spectrometry was used to analyze water samples taken from a pilot-scale spill tank test of conventional crude oil on freshwater. A 56-day spill test was performed, and water samples were taken at regular intervals throughout the test to determine what changes in water chemistry occur with time. Orbitrap mass spectrometry was used to measure oxidized species in water samples, and oxidized species are analyzed by carbon number, double bond equivalent and hydrocarbon class. Emphasis is placed on changes with time over the course of the spill test, to examine changes by weathering processes that could occur naturally in a field spill scenario. Results demonstrate that while the concentrations of polycyclic aromatic hydrocarbons decrease in the water phase over time, the concentrations of total organic carbon and oxidized species in the water increase with time, where quantities of O2 and O3 species have the highest abundance. Measurement of increasing concentrations and changing relative abundances of these oxidized compounds can be used to assess how oil behaves in a freshwater aquatic environment after a spill.


Asunto(s)
Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Agua Dulce , Hidrocarburos , Espectrometría de Masas , Contaminación por Petróleo/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis
3.
Water Res ; 141: 297-306, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-29803095

RESUMEN

The persistence of toxicity associated with the soluble naphthenic organic compounds (NOCs) of oil sands process-affected water (OSPW) implies that a treatment solution may be necessary to enable safe return of this water to the environment. Due to recent advances in high-resolution mass spectrometry (HRMS), the majority of the toxicity of OSPW is currently understood to derive from a subset of toxic classes, comprising only a minority of the total NOCs. Herein, oxidative treatment of OSPW with buoyant photocatalysts was evaluated under a petroleomics paradigm: chemical changes across acid-, base- and neutral-extractable organic fractions were tracked throughout the treatment with both positive and negative ion mode electrospray ionization (ESI) Orbitrap MS. Elimination of detected OS+ and NO+ classes of concern in the earliest stages of the treatment, along with preferential degradation of high carbon-numbered O2- acids, suggest that photocatalysis may detoxify OSPW with higher efficiency than previously thought. Application of petroleomic level analysis offers unprecedented insights into the treatment of petroleum impacted water, allowing reaction trends to be followed across multiple fractions and thousands of compounds simultaneously.


Asunto(s)
Yacimiento de Petróleo y Gas , Compuestos Orgánicos/química , Compuestos Orgánicos/efectos de la radiación , Petróleo , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/efectos de la radiación , Residuos Industriales , Espectrometría de Masas , Oxidación-Reducción , Fotólisis , Aguas Residuales
4.
Chemosphere ; 191: 664-672, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29078190

RESUMEN

The acid extractable organics (AEOs) containing naphthenic acids (NAs) in groundwater overlying undeveloped shale gas (Saint-Édouard region) and tight oil (Haldimand sector, Gaspé) reservoirs in Québec, Canada, were analysed using high resolution Orbitrap mass spectrometry and thermal conversion/elemental analysis - isotope ratio mass spectrometry. As classically defined by CnH2n+ZO2, the most abundant NAs detected in the majority of groundwater samples were straight-chain (Z = 0) or monounsaturated (Z = -2) C16 and C18 fatty acids. Several groundwater samples from both study areas, however, contained significant proportions of presumably alicyclic bicyclic NAs (i.e., Z = -4) in the C10-C18 range. These compounds may have originated from migrated waters containing a different distribution of NAs, or are the product of in situ microbial alteration of shale organic matter and petroleum. In most groundwater samples, intramolecular carbon isotope values generated by pyrolysis (δ13Cpyr) of AEOs were on average around 2-3‰ heavier than those generated by bulk combustion (δ13C) of AEOs, providing further support for microbial reworking of subsurface organic carbon. Although concentrations of AEOs were very low (<2.0 mg/L), the detection of potentially toxic bicyclic acids in groundwater overlying unconventional hydrocarbon reservoirs points to a natural background source of organic contaminants prior to any large-scale commercial hydrocarbon development.


Asunto(s)
Ácidos Carboxílicos/análisis , Monitoreo del Ambiente , Agua Subterránea/química , Yacimiento de Petróleo y Gas , Contaminantes Químicos del Agua/análisis , Canadá , Isótopos de Carbono/análisis , Hidrocarburos , Espectrometría de Masas , Gas Natural/análisis , Compuestos Orgánicos , Petróleo/análisis , Quebec
5.
J Environ Sci Health B ; 50(11): 819-26, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26357892

RESUMEN

As part of an exchange technology program between the government of Barbados and Environment Canada, methanolic and aqueous extracts from the flavonoid-rich Lamiaceae family were characterized using negative-ion electrospray mass spectrometry. The species investigated is part of the Caribbean Pharmacopoeia, and is used for a variety of health issues, including colds, flu, diabetes, and hypertension. The extracts were investigated for structural elucidation of phenolics, identification of chemical taxonomic profile, and evidence of bio-accumulator potential. The methanolic and aqueous leaf extracts of Plectranthus amboinicus yielded rosmarinic acid, ladanein, cirsimaritin, and other methoxylated flavonoids. This genus also shows a tendency to form conjugates with monosaccharides, including glucose, galactose, and rhamnose. The aqueous extract yielded four isomeric rhamnosides. The formation of conjugates by Plectranthus amboinicus is thus evidence of high bioaccumulator significance.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Flavonoides/análisis , Lamiaceae/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Barbados , Flavonoides/química , Flavonoides/farmacocinética , Glicósidos/análisis , Glicósidos/química , Isomerismo , Fenoles/análisis , Extractos Vegetales/análisis , Extractos Vegetales/química , Hojas de la Planta/química , Ramnosa/química
6.
Environ Toxicol Chem ; 34(5): 1001-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25615406

RESUMEN

The open pit oil sands mining operations north of Fort McMurray, Alberta, Canada, are accumulating tailings waste at a rate approximately equal to 4.9 million m(3) /d. Naphthenic acids are among the most toxic components within tailings to aquatic life, but structural components have largely remained unidentified. In the present study, electrospray ionization high-resolution mass spectrometry (ESI-HRMS) and synchronous fluorescence spectroscopy (SFS) were used to characterize fractions derived from the distillation of an acid-extractable organics (AEO) mixture isolated from oil sands process-affected water (OSPW). Mean molecular weights of each fraction, and their relative proportions to the whole AEO extract, were as follows: fraction 1: 237 Da, 8.3%; fraction 2: 240 Da, 23.8%; fraction 3: 257 Da, 26.7%; fraction 4: 308 Da, 18.9%; fraction 5: 355 Da, 10.0%. With increasing mean molecular weight of the AEO fractions, a concurrent increase occurred in the relative abundance of nitrogen-, sulfur-, and oxygen-containing ions, double-bond equivalents, and degree of aromaticity. Structures present in the higher-molecular-weight fractions (fraction 4 and fraction 5) suggested the presence of heteroatoms, dicarboxyl and dihydroxy groups, and organic acid compounds with the potential to function as estrogens. Because organic acid compositions become dominated by more recalcitrant, higher-molecular-weight acids during natural degradation, these findings are important in the context of oil sands tailings pond water remediation.


Asunto(s)
Yacimiento de Petróleo y Gas , Compuestos Orgánicos/análisis , Petróleo/análisis , Alberta , Biodegradación Ambiental , Residuos Industriales/análisis , Metilación , Peso Molecular , Oxígeno/química , Espectrometría de Fluorescencia , Espectrometría de Masa por Ionización de Electrospray , Relación Estructura-Actividad , Contaminantes Químicos del Agua/análisis
7.
Environ Sci Technol ; 47(9): 4471-9, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23566025

RESUMEN

Oil sands processed water (OSPW) is the main byproduct of the large-scale bitumen extraction activity in the Athabasca oil sands region (Alberta, Canada). We have investigated the acid-extractable fraction (AEF) of OSPW by extraction-only (EO) direct infusion (DI) negative-ion mode electrospray ionization (ESI) on a 12T-Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS), as well as by offline ultrahigh performance liquid chromatography (UHPLC) followed by DI-FTICR-MS. A preliminary offline UHPLC separation into 8 fractions using a reversed-phase C4 column led to approximately twice as many detected peaks and identified compounds (973 peaks versus 2231 peaks, of which 856 and 1734 peaks, respectively, could be assigned to chemical formulas based on accurate mass measurements). Conversion of these masses to the Kendrick mass scale allowed the straightforward recognition of homologues. Naphthenic (CnH2n+zO2) and oxy-naphthenic (CnH2n+zOx) acids represented the largest group of molecules with assigned formulas (64%), followed by sulfur-containing compounds (23%) and nitrogen-containing compounds (8%). Pooling of corresponding fractions from two consecutive offline UHPLC runs prior to MS analysis resulted in ~50% more assignments than a single injection, resulting in 3-fold increase of identifications compared to EO-DI-FTICR-MS using the same volume of starting material. Liquid-liquid extraction followed by offline UHPLC fractionation thus holds enormous potential for a more comprehensive profiling of OSPW, which may provide a deeper understanding of its chemical nature and environmental impact.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Petróleo , Dióxido de Silicio , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Ciclotrones
8.
Artículo en Inglés | MEDLINE | ID: mdl-21714625

RESUMEN

There is growing interest in the mass spectrometric characterization of oil sands acids present in natural waters and contaminated soils. This interest stems from efforts to isolate the principal toxic components of oil sands acid extractable organics in aquatic environment. Salting-out effects are demonstrated for nanospray ionization mass spectra of Athabasca oil sands acid extractable organics (naphthenic acids), using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. The differences in spectra obtained for the sodium naphthenates in dichloromethane/acetonitrile cosolvents compared to spectra obtained in the absence of saturated sodium chloride salts, are used here as a surrogate to indicate the more bioavailable or toxic components in natural waters. Whereas, monocarboxylic compounds (C(n)H(2n+Z)O(2)) were prevalent in the Z =-4, -6, and -12 (2, 3 and 6-ring naphthenic acids respectively) family in the carbon number range of 13 to 19 in the dichloromethane/acetonitrile cosolvent systems, salting-out effects resulted in a general enhancement of Z =-4 species, relative to others. Likewise, the shift in relative intensities of species containing O(1), O(3), O(4), O(2)S and O(3)S was dramatic for systems with and without saturated salts present. The O(4) and O(3)S species for example, were prevalent in the dichloromethane/acetonitrile cosolvent but were non-detected in the presence of saturated salts. Interactions of oil sands acids with salts are expected to occur in oil sands processed waters and natural saline waters. As evident by the distribution of species observed, salting-out effects will play a major role in limiting the bioavailability of oil sands acids in aquatic systems.


Asunto(s)
Ácidos Carboxílicos/química , Hidrocarburos/química , Petróleo , Sales (Química)/química , Espectrometría de Masa por Ionización de Electrospray , Contaminantes Químicos del Agua/química , Alberta , Disponibilidad Biológica , Dióxido de Silicio
10.
Artículo en Inglés | MEDLINE | ID: mdl-20623403

RESUMEN

Naphthenic acids (NAs) are natural constituents of bitumen and crude oil. These compounds are concentrated as part of the oil sands process water (OSPW) during petroleum refining and separation from oil sands. NAs are considered among the major water contaminants in OSPW due to their toxicity and environmental recalcitrance. A laboratory scale microwave system was developed and experiments were conducted to determine the efficiency of NA degradation during microwave treatment. The effects of water source and quality (deionized lab water and river water) and of TiO(2) catalyst in the degradation process were also investigated. Degradation kinetic parameters for both total NAs and individual z-family were calculated. The microwave system degraded OSPW NAs and commercial Fluka NAs in river water in the presence of TiO(2) rapidly, producing half-life values of 3.32 and 3.61 hours, respectively. Toxicity assessments of the NA samples pre-and post-treatment indicated that the microwave system reduced overall toxicity of water containing Fluka NAs from high (5 min. IC(50) v/v = 15.85%) to moderate (5 min. IC(50) v/v = 36.45%) toxicity levels. However, a slight increase in toxicity was noted post-treatment in OSPW NAs.


Asunto(s)
Ácidos Carboxílicos/aislamiento & purificación , Residuos Industriales , Microondas , Petróleo , Purificación del Agua/métodos , Agua/química , Ácidos Carboxílicos/química , Ácidos Carboxílicos/toxicidad , Catálisis , Semivida , Cinética , Titanio/química , Purificación del Agua/instrumentación
11.
Artículo en Inglés | MEDLINE | ID: mdl-20486009

RESUMEN

During reclamation the water associated with the runoff or groundwater flushing from dry stackable tailings technologies may become available to the reclaimed environment within an oil sands lease. Here we evaluate the performance of the emergent macrophyte, common reed (Phragmites australis), grown in chemically amended mature fine tailings (MFT) and simulated runoff/seepage water from different MFT drying treatments. The present study also investigated the phytotoxicity of the concentration of oil sands naphthenic acids (NAs) in different MFT drying chemical treatments, in both planted and unplanted systems. We demonstrate that although growth was reduced, the emergent macrophyte common reed was capable of growing in diluted unamended MFT runoff, as well as in diluted runoff from MFT amended with either 0.25% lime and gypsum or 0.5% gypsum. Common reed can thus assist in the dewatering process of oil sands MFT. However, simulated runoff or seepage waters from chemically amended and dried MFT were phytotoxic, due to combined levels of salts, naphthenic acids and pH. Phytoremediation of runoff water/ground water seepage from dry-land applied MFT will thus require pre-treatment in order to make conditions more favorable for plant growth.


Asunto(s)
Biodegradación Ambiental/efectos de los fármacos , Ácidos Carboxílicos/toxicidad , Residuos Industriales/efectos adversos , Petróleo , Poaceae/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Compuestos de Calcio/química , Sulfato de Calcio/química , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Residuos Industriales/análisis , Óxidos/química , Poaceae/crecimiento & desarrollo , Poaceae/metabolismo , Movimientos del Agua , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Abastecimiento de Agua/análisis , Humedales
12.
Mass Spectrom Rev ; 28(1): 121-34, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-18677766

RESUMEN

There is a growing need to develop mass spectrometric methods for the characterization of oil sands naphthenic acids (structural formulae described by C(n)H(2n+z)O(2) where n is the number of carbon atoms and "z" is referred to as the "hydrogen deficiency" and is equal to zero, or is a negative, even integer) present in environmental samples. This interest stems from the need to better understand their contribution to the total acid number of oil sands acids; along with assessing their toxicity in aquatic environments. Negative-ion electrospray ionization has emerged as the analytical technique of choice. For infusion samples, matrix effects are particularly evident for quantification in the presence of salts and co-elutants. However, such effects can be minimized for methods that employ chromatographic separation prior to mass spectrometry (MS) detection. There have been several advances for accurate identification of classes of naphthenic acid components that employ a range of MS hyphenated techniques. General trends measured for degradation of the NAs in the environment appear to be similar to those obtained with either low- or high-resolution MS. Future MS research will likely focus on (i) development of more reliable quantitative methods that use chromatography and internal standards, (ii) the utility of representative model naphthenic acids as surrogates for the complex NA mixtures, and (iii) development of congener-specific analysis of the principal toxic components.


Asunto(s)
Ácidos Carboxílicos/química , Monitoreo del Ambiente/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Contaminantes Químicos del Agua/química , Ácidos Carboxílicos/análisis , Petróleo , Dióxido de Silicio/química , Contaminantes Químicos del Agua/análisis
13.
Chemosphere ; 72(9): 1309-14, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18555508

RESUMEN

Recent expansion within the oil sands industry of the Athabasca Basin of Alberta, Canada has led to increased concern regarding process-affected wastewaters produced during bitumen extraction. Naphthenic acids (NAs) have been identified as the primary toxic constituents of oil sands process-affected waters (OSPW) and studies have shown that with time, microbial degradation of lower molecular weight NAs has led to a decrease in observed toxicity. As earlier studies identified the need for an "unequivocal demonstration" of lower molecular weight NAs being the primary contributors to mixture toxicity, a study was initiated to fractionate an extracted NA mixture by molecular weight and to assess each fraction's toxicity. Successful molecular weight fractionation of a methylated NA mixture was achieved using a Kugelrohr distillation apparatus, in which fractions collected at higher boiling points contained NAs with greater total carbon content as well as greater degree of cyclicity. Assays with Vibrio fischeri bioluminescence (via Microtox assay) revealed that the lowest molecular weight NAs collected had higher potency (EC50: 41.9+/-2.8 mg l(-1)) than the highest molecular weight NAs collected (EC50: 64.9+/-7.4 mg l(-1)). Although these results support field observations of microbial degradation of low molecular weight NAs decreasing OSPW toxicity, it is not clear why larger NAs, given their greater hydrophobicity, would be less toxic.


Asunto(s)
Ácidos Carboxílicos/toxicidad , Alberta , Aliivibrio fischeri/efectos de los fármacos , Bioensayo , Ácidos Carboxílicos/química , Ácidos Carboxílicos/aislamiento & purificación , Fenómenos Químicos , Química Física , Diazometano/síntesis química , Diazometano/química , Industrias , Luminiscencia , Metilación , Peso Molecular , Petróleo , Espectrometría de Masa por Ionización de Electrospray
14.
Rapid Commun Mass Spectrom ; 22(12): 1919-24, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18491283

RESUMEN

The oil sands regions of Northern Alberta, Canada, contain an estimated 1.7 trillion barrels of oil in the form of bitumen, representing the second largest deposit of crude oil in the world. A rapidly expanding industry extracts surface-mined bitumen using alkaline hot water, resulting in large volumes of oil sands process water (OSPW) that must be contained on site due to toxicity. The toxicity has largely been attributed to naphthenic acids (NAs), a complex mixture of naturally occurring aliphatic and (poly-)alicyclic carboxylic acids. Research has increasingly focused on the environmental fate and remediation of OSPW NAs, but an understanding of these processes necessitates an analytical method that can accurately characterize and quantify NA mixtures. Here we report results of an interlaboratory comparison for the analysis of pure commercial NAs and environmental OSPW NAs using direct injection electrospray ionization mass spectrometry (ESI-MS) and high-pressure liquid chromatography/high-resolution mass spectrometry (HPLC/HRMS). Both methods provided very similar characterization of pure commercial NA mixture; however, the m/z selectivity of HPLC/HRMS was essential to prevent substantial false-positive detections and misclassifications in OSPW NA mixtures. For a range of concentrations encompassing those found in OSPW (10-100 mg/L), both methods produced linear response, although concentrations of commercial NAs above 50 mg/L resulted in slight non-linearity by HPLC/HRMS. A three-fold lower response factor for total OSPW NAs by HPLC/HRMS was largely attributable to other organic compounds in the OSPW, including hydroxylated NAs, which may explain the substantial misclassification by ESI-MS. For the quantitative analysis of unknown OSPW samples, both methods yielded total NA concentrations that correlated with results from Fourier transform infrared (FTIR), but the coefficients of determination were not high. Quantification by either MS method should therefore be considered semi-quantitative at best, albeit either method has substantial value in environmental fate experiments where relative concentration changes are the desired endpoints rather than absolute concentrations.


Asunto(s)
Ácidos Carboxílicos/análisis , Petróleo , Espectrometría de Masa por Ionización de Electrospray/métodos , Contaminantes Químicos del Agua/análisis , Calibración , Ácidos Carboxílicos/química , Cromatografía Líquida de Alta Presión/métodos , Estándares de Referencia , Dióxido de Silicio/química , Espectroscopía Infrarroja por Transformada de Fourier
15.
Artículo en Inglés | MEDLINE | ID: mdl-18205052

RESUMEN

The algal phytodegradation of a model naphthenic acid (4-methylcyclohexaneacetic acid) and an oilsands mixture of naphthenic acids (NAs) were evaluated in support of studies to remediate recalcitrant NAs in soils and water. The algae investigated included blue-green algae (Oscillatoria sp.; Aphanizomenon sp.; Anbaena sp.) green algae (Selenastrum sp.; Nannochloris sp.; Ankistrodesmus sp.; Scenedesmus sp.; Haematococcus sp.; Chlorella sp.) and diatoms (Naviculla (1), Naviculla (2) and Nitzschia sp.). Both the cis- and trans-isomers of the model NA were completely uptaken and presumed phytodegraded by the diatom algae Naviculla (2) sp. at a concentration of approximately 5.5 mg/L within a period of 14 days. However, there was no evidence for the phytodegradation of the petroleum oilsands naphthenic acids mixtures, except for possibly experiments utilizing the green algae, Selenastrum sp. The differences in the phytodegradation of the model NA by the diatoms appears to be linked to differences in transport mechanisms by the algae along with differences in the concentration and structure of the respective naphthenic acids.


Asunto(s)
Ácidos Carboxílicos/análisis , Chlorophyta/crecimiento & desarrollo , Cianobacterias/crecimiento & desarrollo , Diatomeas/crecimiento & desarrollo , Petróleo/análisis , Contaminantes Químicos del Agua/análisis , Biodegradación Ambiental , Cinética
16.
Artículo en Inglés | MEDLINE | ID: mdl-18161556

RESUMEN

Differences in dissipation and phytotoxicity were measured for two naphthenic acid mixtures in hydroponically grown emergent macrophytes (Typha latifolia, Phragmites australis, and Scirpus acutus). One of the naphthenic acid (NA) mixtures was extracted from tailings pond water of an oil sands operation in Fort McMurray, Alberta, Canada. The other mixture was a commercially available NA mixture. While the oil sands NA mixture was less phytotoxic to wetland plants compared to the commercially available NA mixture, they were not sequestered by wetland plants like their commercial NA counterparts. The small loss of commercial NAs from the spiked hydroponic system appeared to be selective and dependant on the specific NA compound. The results of this study indicate that plants alone may not mitigate NAs from oil sands tailings pond water. In addition, caution should be taken when making predictions on the environmental fate of oil sands naphthenic acids when using commercial NAs as surrogates.


Asunto(s)
Ácidos Carboxílicos/toxicidad , Residuos Industriales/efectos adversos , Magnoliopsida/efectos de los fármacos , Petróleo , Contaminantes Químicos del Agua/toxicidad , Ácidos Carboxílicos/metabolismo , Hidroponía , Magnoliopsida/crecimiento & desarrollo , Magnoliopsida/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Dióxido de Silicio , Agua/metabolismo , Contaminantes Químicos del Agua/metabolismo
17.
Anal Chem ; 79(16): 6222-9, 2007 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-17602673

RESUMEN

There is a need to develop routine and rugged methods for the characterization of oil sands naphthenic acids present in natural waters and contaminated soils. Mass spectra of naphthenic acids, obtained using a variant of electrospray ionization coupled with a Fourier transform ion cyclotron resonance mass spectrometer, are shown here to vary greatly, reflecting their dependence on solubilities of the acids in organic solvents. The solubilities of components in, for example, 1-octanol (similar solvent to fatty tissue) compared to polar solvents such as methanol or acetonitrile are used here as a surrogate to indicate the more bioavailable or toxic components of naphthenic acids in natural waters. Monocarboxylic compounds (CnH2n+zO2) in the z=-4, -6, and -12 (2-, 3-, and 6-ring naphthenic acids, respectively) family in the carbon number range of 13-19 were prevalent in all solvent systems. The surrogate method is intended to serve as a guide in the isolation of principle toxic components, which in turn supports efforts to remediate oil sands contaminated soils and groundwater.


Asunto(s)
Ácidos Carboxílicos/análisis , Contaminantes del Suelo/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Contaminantes Químicos del Agua/análisis , Petróleo/análisis , Dióxido de Silicio , Solubilidad , Solventes
18.
Artículo en Inglés | MEDLINE | ID: mdl-16760080

RESUMEN

The adsorption characteristics of oil sands tailings pond water (OSTPW)-derived naphthenic acids on soils was determined using a batch partitioning method. The adsorption isotherms were found to be linear in all cases. All tests were conducted at 4 degrees C, and at a pH of 8.0 +/- 0.4, which reflects the pH of a tailings settling facility near Fort McMurray, AB. The adsorption characteristics of the naphthenic acids in a synthetic groundwater (SGW) solution was compared to that of the mixture in Milli-Q water. In the presence of SGW, the adsorption coefficient (K(d)) of the mixture of naphthenic acids on soil 1 with a higher organic carbon fraction (f(oc)) was an order of magnitude higher than that observed with the same soil and the Milli-Q water mixture, increasing from 1.9 +/- 0.2 (mL/g) to 17.8 +/- 1.5 (mL/g). The adsorption coefficient of the mixture of naphthenic acids on soil 2, with a lower f(oc), was also observably higher in the SGW mixture, increasing from 1.3 +/- 0.15 (mL/g) to 3.7 +/- 0.2 (mL/g). The relative fractional abundance of the individual naphthenic acids was plotted in order to determine the presence of preferential sorption between individual species within the mixture. It was found that for all Z families (where Z is a measure of the number of rings), naphthenic acids within the carbon number range of 13 to 17 showed preferential sorption. The mixture in SGW showed more pronounced sorption relative to naphthenic acid mixture in Milli-Q water. The results indicate that mixtures of naphthenic acids sorb strongly to soils and that adsorption would be an important attenuating mechanism in groundwater transport. Furthermore, preferential sorption of the individual naphthenic acids is important from a toxicity stand point since different naphthenic acid species have varying degrees of toxicity.


Asunto(s)
Ácidos Carboxílicos/química , Modelos Químicos , Suelo , Adsorción , Residuos Industriales , Petróleo , Contaminantes del Suelo , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA