Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Plant J ; 103(6): 2263-2278, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32593210

RESUMEN

Potato tuber formation is a secondary developmental programme by which cells in the subapical stolon region divide and radially expand to further differentiate into starch-accumulating parenchyma. Although some details of the molecular pathway that signals tuberisation are known, important gaps in our knowledge persist. Here, the role of a member of the TERMINAL FLOWER 1/CENTRORADIALIS gene family (termed StCEN) in the negative control of tuberisation is demonstrated for what is thought to be the first time. It is shown that reduced expression of StCEN accelerates tuber formation whereas transgenic lines overexpressing this gene display delayed tuberisation and reduced tuber yield. Protein-protein interaction studies (yeast two-hybrid and bimolecular fluorescence complementation) demonstrate that StCEN binds components of the recently described tuberigen activation complex. Using transient transactivation assays, we show that the StSP6A tuberisation signal is an activation target of the tuberigen activation complex, and that co-expression of StCEN blocks activation of the StSP6A gene by StFD-Like-1. Transcriptomic analysis of transgenic lines misexpressing StCEN identifies early transcriptional events in tuber formation. These results demonstrate that StCEN suppresses tuberisation by directly antagonising the function of StSP6A in stolons, identifying StCEN as a breeding marker to improve tuber initiation and yield through the selection of genotypes with reduced StCEN expression.


Asunto(s)
Proteínas de Plantas/fisiología , Tubérculos de la Planta/crecimiento & desarrollo , Solanum tuberosum/crecimiento & desarrollo , Genes de Plantas , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Solanum tuberosum/metabolismo , Transcriptoma
3.
J Exp Bot ; 70(20): 5703-5714, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31328229

RESUMEN

For many potato cultivars, tuber yield is optimal at average daytime temperatures in the range 14-22 °C. Above this range, tuber yield is reduced for most cultivars. We previously reported that moderately elevated temperature increases steady-state expression of the core circadian clock gene TIMING OF CAB EXPRESSION 1 (StTOC1) in developing tubers, whereas expression of the StSP6A tuberization signal is reduced, along with tuber yield. In this study we provide evidence that StTOC1 links environmental signalling with potato tuberization by suppressing StSP6A autoactivation in the stolons. We show that transgenic lines silenced in StTOC1 expression exhibit enhanced StSP6A transcript levels and changes in gene expression in developing tubers that are indicative of an elevated sink strength. Nodal cuttings of StTOC1 antisense lines displayed increased tuber yields at moderately elevated temperatures, whereas tuber yield and StSP6A expression were reduced in StTOC1 overexpressor lines. Here we identify a number of StTOC1 binding partners and demonstrate that suppression of StSP6A expression is independent of StTOC1 complex formation with the potato homolog StPIF3. Down-regulation of StTOC1 thus provides a strategy to mitigate the effects of elevated temperature on tuber yield.


Asunto(s)
Proteínas de Plantas/metabolismo , Tubérculos de la Planta/fisiología , Solanum tuberosum/fisiología , Relojes Circadianos/genética , Relojes Circadianos/fisiología , Calor , Proteínas de Plantas/genética , Tubérculos de la Planta/genética , Solanum tuberosum/genética , Temperatura
4.
Plant Physiol ; 174(1): 356-369, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28270626

RESUMEN

An emerging area in plant research focuses on antagonism between regulatory systems governing growth and immunity. Such cross talk represents a point of vulnerability for pathogens to exploit. AVR2, an RXLR effector secreted by the potato blight pathogen Phytophthora infestans, interacts with potato BSL1, a putative phosphatase implicated in growth-promoting brassinosteroid (BR) hormone signaling. Transgenic potato (Solanum tuberosum) plants expressing the effector exhibit transcriptional and phenotypic hallmarks of overactive BR signaling and show enhanced susceptibility to P. infestans Microarray analysis was used to identify a set of BR-responsive marker genes in potato, all of which are constitutively expressed to BR-induced levels in AVR2 transgenic lines. One of these genes was a bHLH transcription factor, designated StCHL1, homologous to AtCIB1 and AtHBI1, which are known to facilitate antagonism between BR and immune responses. Transient expression of either AVR2 or CHL1 enhanced leaf colonization by P. infestans and compromised immune cell death activated by perception of the elicitin Infestin1 (INF1). Knockdown of CHL1 transcript using Virus-Induced Gene Silencing (VIGS) reduced colonization of P. infestans on Nicotiana benthamiana Moreover, the ability of AVR2 to suppress INF1-triggered cell death was attenuated in NbCHL1-silenced plants, indicating that NbCHL1 was important for this effector activity. Thus, AVR2 exploits cross talk between BR signaling and innate immunity in Solanum species, representing a novel, indirect mode of innate immune suppression by a filamentous pathogen effector.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Phytophthora infestans/metabolismo , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Factores de Virulencia/metabolismo , Secuencia de Aminoácidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Brasinoesteroides/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Phytophthora infestans/genética , Phytophthora infestans/patogenicidad , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Homología de Secuencia de Aminoácido , Solanum tuberosum/genética , Solanum tuberosum/microbiología , Regulación hacia Arriba , Factores de Virulencia/genética
5.
Mol Plant Microbe Interact ; 29(10): 822-828, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27681277

RESUMEN

Field-grown tubers of potato were examined for infection by Tobacco rattle virus (TRV) and consequent production of corky ringspot or spraing symptoms. A microarray study identified genes that are differentially expressed in tuber tissue in response to TRV infection and to spraing production, suggesting that hypersensitive response (HR) pathways are activated in spraing-symptomatic tubers. This was confirmed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) of a selected group of HR-related genes and by histochemical staining of excised tuber tissue with spraing symptoms. qRT-PCR of TRV in different regions of the same tuber slice showed that nonsymptomatic areas contained higher levels of virus relative to spraing-symptomatic areas. This suggests that spraing formation is associated with an active plant defense that reduces the level of virus in the infected tuber. Expression of two of the same plant defense genes was similarly upregulated in tubers that were infected with Potato mop-top virus, a virus that also induces spraing formation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/inmunología , Virus de Plantas/fisiología , Solanum tuberosum/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Enfermedades de las Plantas/virología , Tubérculos de la Planta/genética , Tubérculos de la Planta/inmunología , Tubérculos de la Planta/virología , Solanum tuberosum/inmunología , Solanum tuberosum/virología
6.
Front Microbiol ; 7: 1088, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27462311

RESUMEN

Verocytotoxigenic Escherichia coli (VTEC) can contaminate crop plants, potentially using them as secondary hosts, which can lead to food-borne infection. Currently, little is known about the influence of the specific plant species on the success of bacterial colonization. As such, we compared the ability of the VTEC strain, E. coli O157:H7 'Sakai,' to colonize the roots and leaves of four leafy vegetables: spinach (Spinacia oleracea), lettuce (Lactuca sativa), vining green pea (Pisum sativum), and prickly lettuce (Lactuca serriola), a wild relative of domesticated lettuce. Also, to determine the drivers of the initial response on interaction with plant tissue, the whole transcriptome of E. coli O157:H7 Sakai was analyzed following exposure to plant extracts of varying complexity (spinach leaf lysates or root exudates, and leaf cell wall polysaccharides from spinach or lettuce). Plant extracts were used to reduce heterogeneity inherent in plant-microbe interactions and remove the effect of plant immunity. This dual approach provided information on the initial adaptive response of E. coli O157:H7 Sakai to the plant environment together with the influence of the living plant during bacterial establishment and colonization. Results showed that both the plant tissue type and the plant species strongly influence the short-term (1 h) transcriptional response to extracts as well as longer-term (10 days) plant colonization or persistence. We show that propagation temperature (37 vs. 18°C) has a major impact on the expression profile and therefore pre-adaptation of bacteria to a plant-relevant temperature is necessary to avoid misleading temperature-dependent wholescale gene-expression changes in response to plant material. For each of the plant extracts tested, the largest group of (annotated) differentially regulated genes were associated with metabolism. However, large-scale differences in the metabolic and biosynthetic pathways between treatment types indicate specificity in substrate utilization. Induction of stress-response genes reflected the apparent physiological status of the bacterial genes in each extract, as a result of glutamate-dependent acid resistance, nutrient stress, or translational stalling. A large proportion of differentially regulated genes are uncharacterized (annotated as hypothetical), which could indicate yet to be described functional roles associated with plant interaction for E. coli O157:H7 Sakai.

7.
PLoS One ; 11(3): e0150711, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26937634

RESUMEN

Potato (Solanum tuberosum L) is a natural host of Potato spindle tuber viroid (PSTVd) which can cause characteristic symptoms on developing plants including stunting phenotype and distortion of leaves and tubers. PSTVd is the type species of the family Pospiviroidae, and can replicate in the nucleus and move systemically throughout the plant. It is not well understood how the viroid can affect host genes for successful invasion and which genes show altered expression levels upon infection. Our primary focus in this study is the identification of genes which can affect tuber formation since viroid infection can strongly influence tuber development and especially tuber shape. In this study, we used a large-scale method to identify differentially expressed genes in potato. We have identified defence, stress and sugar metabolism related genes having altered expression levels upon infection. Additionally, hormone pathway related genes showed significant up- or down-regulation. DWARF1/DIMINUTO, Gibberellin 7-oxidase and BEL5 transcripts were identified and validated showing differential expression in viroid infected tissues. Our study suggests that gibberellin and brassinosteroid pathways have a possible role in tuber development upon PSTVd infection.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Tubérculos de la Planta/genética , Solanum tuberosum/genética , Viroides/fisiología , Brasinoesteroides/biosíntesis , Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica , Ontología de Genes , Giberelinas/biosíntesis , Interacciones Huésped-Patógeno , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Anotación de Secuencia Molecular , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Reguladores del Crecimiento de las Plantas/biosíntesis , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/virología , Tubérculos de la Planta/metabolismo , Tubérculos de la Planta/virología , Virus de Plantas/patogenicidad , Virus de Plantas/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Solanum tuberosum/metabolismo , Solanum tuberosum/virología , Viroides/patogenicidad
8.
Sci Rep ; 5: 15229, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26477733

RESUMEN

Phytohormones are involved in diverse aspects of plant life including the regulation of plant growth, development and reproduction, as well as governing biotic and abiotic stress responses. We have generated a comprehensive transcriptional reference map of the early potato responses to exogenous application of the defence hormones abscisic acid, brassinolides (applied as epibrassinolide), ethylene (applied as the ethylene precursor aminocyclopropanecarboxylic acid), salicylic acid and jasmonic acid (applied as methyl jasmonate). Of the 39000 predicted genes on the microarray, a total of 2677 and 2473 genes were significantly differentially expressed at 1 h and 6 h after hormone treatment, respectively. Specific marker genes newly identified for the early hormone responses in potato include: a homeodomain 20 transcription factor (DMG400000248) for abscisic acid; a SAUR gene (DMG400016561) induced in epibrassinolide treated plants; an osmotin gene (DMG400003057) specifically enhanced by aminocyclopropanecarboxylic acid; a gene weakly similar to AtWRKY40 (DMG402007388) that was induced by salicylic acid; and a jasmonate ZIM-domain protein 1 (DMG400002930) which was specifically activated by methyl jasmonate. An online database has been set up to query the expression patterns of potato genes represented on the microarray that can also incorporate future microarray or RNAseq-based expression studies.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Solanum tuberosum/efectos de los fármacos , Solanum tuberosum/genética , Transcriptoma , Biología Computacional/métodos , Bases de Datos de Ácidos Nucleicos , Anotación de Secuencia Molecular , Reproducibilidad de los Resultados
9.
Plant Sci ; 234: 27-37, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25804807

RESUMEN

Astaxanthin is a high value carotenoid produced by some bacteria, a few green algae, several fungi but only a limited number of plants from the genus Adonis. Astaxanthin has been industrially exploited as a feed supplement in poultry farming and aquaculture. Consumption of ketocarotenoids, most notably astaxanthin, is also increasingly associated with a wide range of health benefits, as demonstrated in numerous clinical studies. Currently astaxanthin is produced commercially by chemical synthesis or from algal production systems. Several studies have used a metabolic engineering approach to produce astaxanthin in transgenic plants. Previous attempts to produce transgenic potato tubers biofortified with astaxanthin have met with limited success. In this study we have investigated approaches to optimising tuber astaxanthin content. It is demonstrated that the selection of appropriate parental genotype for transgenic approaches and stacking carotenoid biosynthetic pathway genes with the cauliflower Or gene result in enhanced astaxanthin content, to give six-fold higher tuber astaxanthin content than has been achieved previously. Additionally we demonstrate the effects of growth environment on tuber carotenoid content in both wild type and astaxanthin-producing transgenic lines and describe the associated transcriptome and metabolome restructuring.


Asunto(s)
Carotenoides/metabolismo , Solanum tuberosum/genética , Carotenoides/química , Ambiente , Antecedentes Genéticos , Ingeniería Metabólica , Metaboloma , Tubérculos de la Planta/química , Tubérculos de la Planta/genética , Tubérculos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Solanum tuberosum/química , Solanum tuberosum/metabolismo , Transcriptoma , Transgenes , Xantófilas/química , Xantófilas/metabolismo
10.
Physiol Plant ; 155(1): 12-20, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25625434

RESUMEN

A biological pathway is the set of molecular entities involved in a given biological process and the interrelations among them. Even though biological pathways have been studied extensively, discovering missing genes in pathways remains a fundamental challenge. Here, we present an easy-to-use tool that allows users to run MORPH (MOdule-guided Ranking of candidate PatHway genes), an algorithm for revealing missing genes in biological pathways, and demonstrate its capabilities. MORPH supports the analysis in tomato, Arabidopsis and the two new species: rice and the newly sequenced potato genome. The new tool, called MORPH-R, is available both as a web server (at http://bioinformatics.psb.ugent.be/webtools/morph/) and as standalone software that can be used locally. In the standalone version, the user can apply the tool to new organisms using any proprietary and public data sources.


Asunto(s)
Vías Biosintéticas/genética , Biología Computacional/métodos , Genes de Plantas/genética , Programas Informáticos , Algoritmos , Arabidopsis/genética , Ontología de Genes , Internet , Solanum lycopersicum/genética , Oryza/genética , Reproducibilidad de los Resultados , Solanum tuberosum/genética
11.
BMC Plant Biol ; 14: 329, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25476999

RESUMEN

BACKGROUND: For most organisms, even if their genome sequence is available, little functional information about individual genes or proteins exists. Several annotation pipelines have been developed for functional analysis based on sequence, 'omics', and literature data. However, researchers encounter little guidance on how well they perform. Here, we used the recently sequenced potato genome as a case study. The potato genome was selected since its genome is newly sequenced and it is a non-model plant even if there is relatively ample information on individual potato genes, and multiple gene expression profiles are available. RESULTS: We show that the automatic gene annotations of potato have low accuracy when compared to a "gold standard" based on experimentally validated potato genes. Furthermore, we evaluate six state-of-the-art annotation pipelines and show that their predictions are markedly dissimilar (Jaccard similarity coefficient of 0.27 between pipelines on average). To overcome this discrepancy, we introduce a simple GO structure-based algorithm that reconciles the predictions of the different pipelines. We show that the integrated annotation covers more genes, increases by over 50% the number of highly co-expressed GO processes, and obtains much higher agreement with the gold standard. CONCLUSIONS: We find that different annotation pipelines produce different results, and show how to integrate them into a unified annotation that is of higher quality than each single pipeline. We offer an improved functional annotation of both PGSC and ITAG potato gene models, as well as tools that can be applied to additional pipelines and improve annotation in other organisms. This will greatly aid future functional analysis of '-omics' datasets from potato and other organisms with newly sequenced genomes. The new potato annotations are available with this paper.


Asunto(s)
Genoma de Planta , Anotación de Secuencia Molecular , Solanum tuberosum/genética
12.
BMC Plant Biol ; 14: 254, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25270759

RESUMEN

BACKGROUND: Potato late blight caused by the oomycete pathogen Phytophthora infestans can lead to immense yield loss. We investigated the transcriptome of Solanum tubersoum (cv. Desiree) and characterized the secretome by quantitative proteomics after foliar application of the protective agent phosphite. We also studied the distribution of phosphite in planta after application and tested transgenic potato lines with impaired in salicylic and jasmonic acid signaling. RESULTS: Phosphite had a rapid and transient effect on the transcriptome, with a clear response 3 h after treatment. Strikingly this effect lasted less than 24 h, whereas protection was observed throughout all time points tested. In contrast, 67 secretome proteins predominantly associated with cell-wall processes and defense changed in abundance at 48 h after treatment. Transcripts associated with defense, wounding, and oxidative stress constituted the core of the phosphite response. We also observed changes in primary metabolism and cell wall-related processes. These changes were shown not to be due to phosphate depletion or acidification caused by phosphite treatment. Of the phosphite-regulated transcripts 40% also changed with ß-aminobutyric acid (BABA) as an elicitor, while the defence gene PR1 was only up-regulated by BABA. Although phosphite was shown to be distributed in planta to parts not directly exposed to phosphite, no protection in leaves without direct foliar application was observed. Furthermore, the analysis of transgenic potato lines indicated that the phosphite-mediated resistance was independent of the plant hormones salicylic and jasmonic acid. CONCLUSIONS: Our study suggests that a rapid phosphite-triggered response is important to confer long-lasting resistance against P. infestans and gives molecular understanding of its successful field applications.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fosfitos/farmacología , Phytophthora infestans/fisiología , Enfermedades de las Plantas/inmunología , Solanum tuberosum/efectos de los fármacos , Transcriptoma , Aminobutiratos/farmacología , Ontología de Genes , Fosfitos/análisis , Inmunidad de la Planta , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Solanum tuberosum/genética , Solanum tuberosum/inmunología
13.
Theor Appl Genet ; 127(9): 1917-33, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24965888

RESUMEN

KEY MESSAGE: Genome-wide QTL analysis of potato tuber carotenoid content was investigated in populations of Solanum tuberosum Group Phureja that segregate for flesh colour, revealing a novel major QTL on chromosome 9. The carotenoid content of edible plant storage organs is a key nutritional and quality trait. Although the structural genes that encode the biosynthetic enzymes are well characterised, much less is known about the factors that determine overall storage organ content. In this study, genome-wide QTL mapping, in concert with an efficient 'genetical genomics' analysis using bulked samples, has been employed to investigate the genetic architecture of potato tuber carotenoid content. Two diploid populations of Solanum tuberosum Group Phureja were genotyped (AFLP, SSR and DArT markers) and analysed for their tuber carotenoid content over two growing seasons. Common to both populations were QTL that explained relatively small proportions of the variation in constituent carotenoids and a major QTL on chromosome 3 explaining up to 71 % of the variation in carotenoid content. In one of the populations (01H15), a second major carotenoid QTL was identified on chromosome 9, explaining up to 20 % of the phenotypic variation. Whereas the major chromosome 3 QTL was likely to be due to an allele of a gene encoding ß-carotene hydroxylase, no known carotenoid biosynthetic genes are located in the vicinity of the chromosome 9 QTL. A unique expression profiling strategy using phenotypically distinct bulks comprised individuals with similar carotenoid content provided further support for the QTL mapping to chromosome 9. This study shows the potential of using the potato genome sequence to link genetic maps to data arising from eQTL approaches to enhance the discovery of candidate genes underlying QTLs.


Asunto(s)
Carotenoides/química , Tubérculos de la Planta/química , Sitios de Carácter Cuantitativo , Solanum tuberosum/genética , Transcriptoma , Mapeo Cromosómico , Cromosomas de las Plantas , Genotipo , Oxigenasas de Función Mixta/genética , Solanum tuberosum/química
14.
BMC Genomics ; 15: 315, 2014 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-24773703

RESUMEN

BACKGROUND: Induced resistance (IR) can be part of a sustainable plant protection strategy against important plant diseases. ß-aminobutyric acid (BABA) can induce resistance in a wide range of plants against several types of pathogens, including potato infected with Phytophthora infestans. However, the molecular mechanisms behind this are unclear and seem to be dependent on the system studied. To elucidate the defence responses activated by BABA in potato, a genome-wide transcript microarray analysis in combination with label-free quantitative proteomics analysis of the apoplast secretome were performed two days after treatment of the leaf canopy with BABA at two concentrations, 1 and 10 mM. RESULTS: Over 5000 transcripts were differentially expressed and over 90 secretome proteins changed in abundance indicating a massive activation of defence mechanisms with 10 mM BABA, the concentration effective against late blight disease. To aid analysis, we present a more comprehensive functional annotation of the microarray probes and gene models by retrieving information from orthologous gene families across 26 sequenced plant genomes. The new annotation provided GO terms to 8616 previously un-annotated probes. CONCLUSIONS: BABA at 10 mM affected several processes related to plant hormones and amino acid metabolism. A major accumulation of PR proteins was also evident, and in the mevalonate pathway, genes involved in sterol biosynthesis were down-regulated, whereas several enzymes involved in the sesquiterpene phytoalexin biosynthesis were up-regulated. Interestingly, abscisic acid (ABA) responsive genes were not as clearly regulated by BABA in potato as previously reported in Arabidopsis. Together these findings provide candidates and markers for improved resistance in potato, one of the most important crops in the world.


Asunto(s)
Proteómica , Solanum tuberosum/metabolismo , Transcriptoma , Phytophthora/patogenicidad , Solanum tuberosum/genética , Solanum tuberosum/microbiología
15.
Plant Cell Environ ; 37(6): 1351-63, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24236539

RESUMEN

Recent advances have defined some of the components of photoperiodic signalling that lead to tuberization in potato including orthologues of FLOWERING LOCUS T (StSP6A) and CYCLING DOF FACTOR (StCDF1). The aim of the current study is to investigate the molecular basis of permissive tuber initiation under long days in Solanum tuberosum Neo-Tuberosum by comparative analysis with an obligate short-day S. tuberosum ssp. Andigena accession. We show that the Neo-Tuberosum accession, but not the Andigena, contains alleles that encode StCDF1 proteins modified in the C-terminal region, likely to evade long day inhibition of StSP6A expression. We also identify an allele of StSP6A from the Neo-Tuberosum accession, absent in the Andigena, which is expressed under long days. Other leaf transcripts and metabolites that show different abundances in tuberizing and non-tuberizing samples were identified adding detail to tuberization-associated processes. Overall, the data presented in this study highlight the subtle interplay between components of the clock-CONSTANS-StSP6A axis which collectively may interact to fine-tune the timing of tuberization.


Asunto(s)
Fotoperiodo , Tubérculos de la Planta/metabolismo , Solanum tuberosum/metabolismo , Transcriptoma , Secuencia de Aminoácidos , Genotipo , Metaboloma , Datos de Secuencia Molecular , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/crecimiento & desarrollo , Polimorfismo Genético , Alineación de Secuencia , Solanum tuberosum/genética , Solanum tuberosum/crecimiento & desarrollo
16.
Plant Cell Environ ; 37(2): 439-50, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23889235

RESUMEN

Although significant work has been undertaken regarding the response of model and crop plants to heat shock during the acclimatory phase, few studies have examined the steady-state response to the mild heat stress encountered in temperate agriculture. In the present work, we therefore exposed tuberizing potato plants to mildly elevated temperatures (30/20 °C, day/night) for up to 5 weeks and compared tuber yield, physiological and biochemical responses, and leaf and tuber metabolomes and transcriptomes with plants grown under optimal conditions (22/16 °C). Growth at elevated temperature reduced tuber yield despite an increase in net foliar photosynthesis. This was associated with major shifts in leaf and tuber metabolite profiles, a significant decrease in leaf glutathione redox state and decreased starch synthesis in tubers. Furthermore, growth at elevated temperature had a profound impact on leaf and tuber transcript expression with large numbers of transcripts displaying a rhythmic oscillation at the higher growth temperature. RT-PCR revealed perturbation in the expression of circadian clock transcripts including StSP6A, previously identified as a tuberization signal. Our data indicate that potato plants grown at moderately elevated temperatures do not exhibit classic symptoms of abiotic stress but that tuber development responds via a diversity of biochemical and molecular signals.


Asunto(s)
Respuesta al Choque Térmico , Solanum tuberosum/metabolismo , Temperatura , Empalme Alternativo , Carbono/metabolismo , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Regulación de la Expresión Génica de las Plantas , Metaboloma , Oxidación-Reducción , Fotosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/fisiología
17.
Mol Plant Pathol ; 13(9): 1120-34, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22863280

RESUMEN

The potato cyst nematodes (PCNs) Globodera pallida and Globodera rostochiensis are important parasites of potato. PCNs undergo complex biotrophic interactions with their hosts that involve gene expression changes in both the nematode and the host plant. The aim of this study was to determine key genes that are differentially expressed in Globodera pallida life cycle stages and during the initiation of the feeding site in susceptible and partially resistant potato genotypes. For this purpose, two microarray experiments were designed: (i) a comparison of eggs, infective second-stage juveniles (J2s) and sedentary parasitic-stage J2s (SJ2); (ii) a comparison of SJ2s at 8 days after inoculation (DAI) in the susceptible cultivar (Desirée) and two partially resistant lines. The results showed differential expression of G. pallida genes during the stages studied, including previously characterized effectors. In addition, a large number of genes changed their expression between SJ2s in the susceptible cultivar and those infecting partially resistant lines; the number of genes with modified expression was lower when the two partially resistant lines were compared. Moreover, a histopathological study was performed at several time points (7, 14 and 30 DAI) and showed the similarities between both partially resistant lines with a delay and degeneration in the formation of the syncytia in comparison with the susceptible cultivar. Females at 30 DAI in partially resistant lines showed a delay in their development in comparison with those in the susceptible cultivar.


Asunto(s)
Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Estadios del Ciclo de Vida/genética , Solanum tuberosum/genética , Solanum tuberosum/parasitología , Tylenchoidea/crecimiento & desarrollo , Tylenchoidea/genética , Animales , Femenino , Regulación de la Expresión Génica , Genes de Helminto/genética , Genotipo , Familia de Multigenes , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Solanum tuberosum/citología
18.
Plant Biotechnol J ; 9(8): 848-56, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21281424

RESUMEN

Although processed potato tuber texture is an important trait that influences consumer preference, a detailed understanding of tuber textural properties at the molecular level is lacking. Previous work has identified tuber pectin methyl esterase (PME) activity as a potential factor impacting on textural properties, and the expression of a gene encoding an isoform of PME (PEST1) was associated with cooked tuber textural properties. In this study, a transgenic approach was undertaken to investigate further the impact of the PEST1 gene. Antisense and over-expressing potato lines were generated. In over-expressing lines, tuber PME activity was enhanced by up to 2.3-fold; whereas in antisense lines, PME activity was decreased by up to 62%. PME isoform analysis indicated that the PEST1 gene encoded one isoform of PME. Analysis of cell walls from tubers from the over-expressing lines indicated that the changes in PME activity resulted in a decrease in pectin methylation. Analysis of processed tuber texture demonstrated that the reduced level of pectin methylation in the over-expressing transgenic lines was associated with a firmer processed texture. Thus, there is a clear link between PME activity, pectin methylation and processed tuber textural properties.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Regulación Enzimológica de la Expresión Génica , Ingeniería Genética/métodos , Tubérculos de la Planta/fisiología , Solanum tuberosum/genética , Agrobacterium tumefaciens/genética , Hidrolasas de Éster Carboxílico/genética , Pared Celular/metabolismo , Activación Enzimática , Manipulación de Alimentos , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Vectores Genéticos/genética , Isoenzimas/metabolismo , Metilación , Análisis de Secuencia por Matrices de Oligonucleótidos , Pectinas/genética , Pectinas/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/fisiología , Solanum tuberosum/metabolismo , Solanum tuberosum/fisiología , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Transgenes
19.
Ann Bot ; 107(2): 243-54, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21148585

RESUMEN

BACKGROUND AND AIMS: Improving phosphorus (P) nutrient efficiency in Lolium perenne (perennial ryegrass) is likely to result in considerable economic and ecological benefits. To date, research into the molecular and biochemical response of perennial ryegrass to P deficiency has been limited, particularly in relation to the early response mechanisms. This study aimed to identify molecular mechanisms activated in response to the initial stages of P deficiency. METHODS: A barley microarray was successfully used to study gene expression in perennial ryegrass and this was complemented with gas chromatography-mass spectrometry metabolic profiling to obtain an overview of the plant response to early stages of P deficiency. KEY RESULTS: After 24 h of P deficiency, internal phosphate concentrations were reduced and significant alterations were detected in the metabolome and transcriptome of two perennial ryegrass genotypes. Results indicated a replacement of phospholipids with sulfolipids and the utilization of glycolytic bypasses in response to P deficiency in perennial ryegrass. CONCLUSIONS: The transcriptome and metabolome of perennial ryegrass undergo changes in response to reductions in P supply after 24 h.


Asunto(s)
Lolium/genética , Lolium/metabolismo , Fósforo/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Perfilación de la Expresión Génica , Genoma de Planta , Genotipo , Metaboloma , Análisis de Secuencia por Matrices de Oligonucleótidos , Compuestos Organofosforados/metabolismo
20.
Plant Physiol ; 154(2): 656-64, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20688977

RESUMEN

The factors that regulate storage organ carotenoid content remain to be fully elucidated, despite the nutritional and economic importance of this class of compound. Recent findings suggest that carotenoid pool size is determined, at least in part, by the activity of carotenoid cleavage dioxygenases. The aim of this study was to investigate whether Carotenoid Cleavage Dioxygenase4 (CCD4) activity affects potato (Solanum tuberosum) tuber carotenoid content. Microarray analysis revealed elevated expression of the potato CCD4 gene in mature tubers from white-fleshed cultivars compared with higher carotenoid yellow-fleshed tubers. The expression level of the potato CCD4 gene was down-regulated using an RNA interference (RNAi) approach in stable transgenic lines. Down-regulation in tubers resulted in an increased carotenoid content, 2- to 5-fold higher than in control plants. The increase in carotenoid content was mainly due to elevated violaxanthin content, implying that this carotenoid may act as the in vivo substrate. Although transcript level was also reduced in plant organs other than tubers, such as leaves, stems, and roots , there was no change in carotenoid content in these organs. However, carotenoid levels were elevated in flower petals from RNAi lines. As well as changes in tuber carotenoid content, tubers from RNAi lines exhibited phenotypes such as heat sprouting, formation of chain tubers, and an elongated shape. These results suggest that the product of the CCD4 reaction may be an important factor in tuber heat responses.


Asunto(s)
Carotenoides/análisis , Proteínas de Plantas/metabolismo , Solanum tuberosum/enzimología , Ácido Abscísico/análisis , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Plantas/genética , Tubérculos de la Planta/enzimología , Tubérculos de la Planta/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Interferencia de ARN , ARN de Planta/genética , Solanum tuberosum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA