Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cells ; 11(21)2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36359919

RESUMEN

Alzheimer's disease (AD) is an irreversible neurodegenerative disorder with a complex pathophysiology. Type 2 diabetes (T2D) is a strong risk factor for AD that shares similar abnormal features including metabolic dysregulation and brain pathology such as amyloid and/or Tau deposits. Emerging evidence suggests that circulating branched-chain amino acids (BCAAs) are associated with T2D. While excess BCAAs are shown to be harmful to neurons, its connection to AD is poorly understood. Here we show that individuals with AD have elevated circulating BCAAs and their metabolites compared to healthy individuals, and that a BCAA metabolite is correlated with the severity of dementia. APPSwe mouse model of AD also displayed higher plasma BCAAs compared to controls. In pursuit of understanding a potential causality, BCAA supplementation to HT-22 neurons was found to reduce genes critical for neuronal health while increasing phosphorylated Tau. Moreover, restricting BCAAs from diet delayed cognitive decline and lowered AD-related pathology in the cortex and hippocampus in APP/PS1 mice. BCAA restriction for two months was sufficient to correct glycemic control and increased/restored dopamine that were severely reduced in APP/PS1 controls. Treating 5xFAD mice that show early brain pathology with a BCAA-lowering compound recapitulated the beneficial effects of BCAA restriction on brain pathology and neurotransmitters including norepinephrine and serotonin. Collectively, this study reveals a positive association between circulating BCAAs and AD. Our findings suggest that BCAAs impair neuronal functions whereas BCAA-lowering alleviates AD-related pathology and cognitive decline, thus establishing a potential causal link between BCAAs and AD progression.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Diabetes Mellitus Tipo 2 , Ratones , Animales , Aminoácidos de Cadena Ramificada/metabolismo , Enfermedad de Alzheimer/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cognición
2.
Exp Clin Endocrinol Diabetes ; 129(7): 519-527, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31340394

RESUMEN

AIMS AND METHODS: The declining ability to control blood glucose with advancement of age is an important health risk factor and may lead to insulin resistance, type-2-diabetes and Alzheimer's disease. Adenovirus 36(Ad36) improves glycemic control independent of insulin signaling(insulin sparing effect) as evidenced by cell, animal and observational human studies. This property of Ad36 may be useful in correcting aging-related glucose intolerance and related health conditions. Therefore, we determined the effect of Ad36 on glycemic control in older mice, to identify the age group that best responds to Ad36. Six, 12 or 20-month old C57Bl/6 mice on chow diet were each divided into weight-matched groups(mock-infected or Ad36-infected). Body weight was recorded weekly post infection (p.i.) and fasting glucose measured(week 0, 4, 8 and 20 p.i.). Blood glucose and serum insulin were measured during glucose tolerance test(week 0 and 16 p.i.). At week 20 p.i., animals were sacrificed, blood and tissues collected. RESULTS: Mice from all age groups showed improvement in glucose clearance post Ad36 infection, but a more profound effect was observed in 6-month old mice compared with mock-infected mice. Under fed conditions though there was no difference in blood glucose at 20 wk p.i., interestingly, Ad36 reduced serum insulin in age groups old mice, compared with control mice. CONCLUSIONS: These findings suggest Ad36 infected animals improve glycemic control and clear post-prandial gluco00000se increase without increasing insulin secretion in an insulin sparing manner. These beneficial effects provide strong evidence for developing Ad36-based approaches as a novel tool to attenuate age associated glucose intolerance.


Asunto(s)
Infecciones por Adenoviridae , Envejecimiento/metabolismo , Terapia Biológica , Glucemia , Intolerancia a la Glucosa/sangre , Intolerancia a la Glucosa/terapia , Insulina/sangre , Factores de Edad , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA