Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35074876

RESUMEN

Nearly 90% of flowering plants depend on animals for reproduction. One of the main rewards plants offer to pollinators for visitation is nectar. Nesocodon mauritianus (Campanulaceae) produces a blood-red nectar that has been proposed to serve as a visual attractant for pollinator visitation. Here, we show that the nectar's red color is derived from a previously undescribed alkaloid termed nesocodin. The first nectar produced is acidic and pale yellow in color, but slowly becomes alkaline before taking on its characteristic red color. Three enzymes secreted into the nectar are either necessary or sufficient for pigment production, including a carbonic anhydrase that increases nectar pH, an aryl-alcohol oxidase that produces a pigment precursor, and a ferritin-like catalase that protects the pigment from degradation by hydrogen peroxide. Our findings demonstrate how these three enzymatic activities allow for the condensation of sinapaldehyde and proline to form a pigment with a stable imine bond. We subsequently verified that synthetic nesocodin is indeed attractive to Phelsuma geckos, the most likely pollinators of Nesocodon We also identify nesocodin in the red nectar of the distantly related and hummingbird-visited Jaltomata herrerae and provide molecular evidence for convergent evolution of this trait. This work cumulatively identifies a convergently evolved trait in two vertebrate-pollinated species, suggesting that the red pigment is selectively favored and that only a limited number of compounds are likely to underlie this type of adaptation.


Asunto(s)
Flores/metabolismo , Magnoliopsida/metabolismo , Pigmentación/fisiología , Néctar de las Plantas/metabolismo , Polen/metabolismo , Adaptación Fisiológica/fisiología , Animales , Aves/fisiología , Lagartos/fisiología , Polinización/fisiología , Reproducción/fisiología
2.
J Vis Exp ; (136)2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29985332

RESUMEN

Plants produce thousands of small molecules that are diverse in their chemical properties. Mass spectrometry (MS) is a powerful technique for analyzing plant metabolites because it provides molecular weights with high sensitivity and specificity. Leaf spray MS is an ambient ionization technique where plant tissue is used for direct chemical analysis via electrospray, eliminating chromatography from the process. This approach to sampling metabolites allows for a wide range of chemical classes to be detected simultaneously from intact plant tissues, minimizing the amount of sample preparation needed. When used with a high-resolution, accurate mass MS, leaf spray MS facilitates the rapid detection of metabolites of interest. It is also possible to collect tandem mass fragmentation data with this technique to facilitate a compound identification. The combination of accurate mass measurements and fragmentation is beneficial in confirming compound identities. The leaf spray MS technique requires only minor modifications to a nanospray ionization source and is a useful tool to further expand the capabilities of a mass spectrometer. Here, fresh leaf tissue from Sceletium tortuosum (Aizoaceae), a traditional medicinal plant from South Africa, is analyzed; numerous mesembrine alkaloids are detected with leaf spray MS.


Asunto(s)
Hojas de la Planta/química , Espectrometría de Masa por Ionización de Electrospray/métodos
3.
Front Chem ; 6: 191, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29904627

RESUMEN

In this study we describe a [15N] stable isotopic labeling study of amino acids in Spirodela polyrhiza (common duckweed) grown under three different light and carbon input conditions which represent unique potential metabolic modes. Plants were grown with a light cycle, either with supplemental sucrose (mixotrophic) or without supplemental sucrose (photoautotrophic) and in the dark with supplemental sucrose (heterotrophic). Labeling patterns, pool sizes (both metabolically active and inactive), and kinetics/turnover rates were estimated for 17 of the proteinogenic amino acids. Estimation of these parameters followed several overall trends. First, most amino acids showed plateaus in labeling patterns of <100% [15N]-labeling, indicating the possibility of a large proportion of amino acids residing in metabolically inactive metabolite pools. Second, total pool sizes appear largest in the dark (heterotrophic) condition, whereas active pool sizes appeared to be largest in the light with sucrose (mixotrophic) growth condition. In contrast turnover measurements based on pool size were highest overall in the light with sucrose experiment, with the exception of leucine/isoleucine, lysine, and arginine, which all showed higher turnover in the dark. K-means clustering analysis also revealed more rapid turnover in the light treatments with many amino acids clustering in lower-turnover groups. Emerging insights from other research were also supported, such as the prevalence of alternate pathways for serine metabolism in non-photosynthetic cells. These data provide extensive novel information on amino acid pool size and kinetics in S. polyrhiza and can serve as groundwork for future metabolic studies.

4.
Artículo en Inglés | MEDLINE | ID: mdl-28985484

RESUMEN

Carotenoids are a large class of compounds that are biosynthesized by condensation of isoprene units in plants, fungi, bacteria, and some animals. They are characteristically highly conjugated through double bonds, which lead to many isomers as well susceptibility to oxidation and other chemical modifications. Carotenoids are important because of their potent antioxidant activity and are the pigments responsible for color in a wide variety of foods. Human consumption is correlated to many health benefits including prevention of cancer, cardiovascular disease, and age-related disease. Extreme hydrophobicity, poor stability, and low concentration in biological samples make these compounds difficult to analyze and difficult to develop analytical methods for aimed towards identification and quantification. Examples in the literature frequently report the use of exotic stationary phases, solvents, and additives, such as ethyl acetate, dichloromethane, and methyl tert-butyl ether that are incompatible with liquid chromatography mass spectrometry (LC-MS). In order to address these issues, we implemented the use of LC-MS friendly conditions using a low-hydrophobicity cyano-propyl column (Agilent Zorbax SB-CN). We successfully differentiated between isomeric carotenoids by optimizing two gradient methods and using a mixture of 11 standards and LC-MS in positive ionization mode. Three complex biological samples from strawberry leaf, chicken feed supplement, and the photosynthetic bacterium Chloroflexus aurantiacus were analyzed and several carotenoids were resolved in these diverse backgrounds. Our results show this methodology is a significant improvement over other alternatives for analyzing carotenoids because of its ease of use, rapid analysis time, high selectivity, and, most importantly, its compatibility with typical LC-MS conditions.


Asunto(s)
Carotenoides/análisis , Carotenoides/aislamiento & purificación , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Alimentación Animal/análisis , Carotenoides/química , Chloroflexus/química , Fragaria/química , Isomerismo , Modelos Químicos , Hojas de la Planta/química
5.
Artículo en Inglés | MEDLINE | ID: mdl-27348709

RESUMEN

Dynamic metabolic flux analysis requires efficient and effective methods for extraction, purification and analysis of a plethora of naturally-occurring compounds. One area of metabolism that would be highly informative to study using metabolic flux analysis is the tricarboxylic acid (TCA) cycle, which consists of short-chain carboxylic acids. Here, we describe a newly-developed method for extraction, purification, derivatization and analysis of short-chain carboxylic acids involved in the TCA cycle. The method consists of snap-freezing the plant material, followed by maceration and a 12-15h extraction at -80 °C. The extracts are then subject to reduction (to stabilize ß-keto acids), purified by strong anion exchange solid phase extraction and methylated with methanolic HCl. This method could also be readily adapted to quantify many other short-chain carboxylic acids.


Asunto(s)
Ácidos Carboxílicos/análisis , Ciclo del Ácido Cítrico , Cromatografía de Gases y Espectrometría de Masas/métodos , Magnoliopsida/metabolismo , Ácidos Carboxílicos/aislamiento & purificación , Ácidos Carboxílicos/metabolismo , Magnoliopsida/química , Análisis de Flujos Metabólicos/métodos , Metilación , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Extracción en Fase Sólida/métodos
6.
PLoS One ; 9(11): e111572, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25365244

RESUMEN

Formerly used world-wide as a popular botanical medicine to reduce anxiety, reports of hepatotoxicity linked to consuming kava extracts in the late 1990s have resulted in global restrictions on kava use and have hindered kava-related research. Despite its presence on the United States Food and Drug Administration consumer advisory list for the past decade, export data from kava producing countries implies that US kava imports, which are not publicly reported, are both increasing and of a fairly high volume. We have measured the variability in extract chemical composition and cytotoxicity towards human lung adenocarcinoma A549 cancer cells of 25 commercially available kava products. Results reveal a high level of variation in chemical content and cytotoxicity of currently available kava products. As public interest and use of kava products continues to increase in the United States, efforts to characterize products and expedite research of this potentially useful botanical medicine are necessary.


Asunto(s)
Kava/química , Extractos Vegetales/química , Extractos Vegetales/toxicidad , Plantas Medicinales/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Fraccionamiento Químico , Humanos , Concentración 50 Inhibidora , Metabolómica/métodos
7.
Plant J ; 79(6): 1065-75, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25040570

RESUMEN

The bulk of indole-3-acetic acid (IAA) in plants is found in the form of conjugated molecules, yet past research on identifying these compounds has largely relied on methods that were both laborious and inefficient. Using recent advances in analytical instrumentation, we have developed a simple yet powerful liquid chromatography-mass spectrometry (LC-MS)-based method for the facile characterization of the small IAA conjugate profile of plants. The method uses the well-known quinolinium ion (m/z 130.0651) generated in MS processes as a signature with high mass accuracy that can be used to screen plant extracts for indolic compounds, including IAA conjugates. We reinvestigated Glycine max (soybean) for its indoles and found indole-3-acetyl-trytophan (IA-Trp) in addition to the already known indole-3-acetyl-aspartic acid (IA-Asp) and indole-3-acetyl-glutamic acid (IA-Glu) conjugates. Surprisingly, several organic acid conjugates of tryptophan were also discovered, many of which have not been reported in planta before. These compounds may have important physiological roles in tryptophan metabolism, which in turn can affect human nutrition. We also demonstrated the general applicability of this method by identifying indolic compounds in different plant tissues of diverse phylogenetic origins. It involves minimal sample preparation but can work in conjunction with sample enrichment techniques. This method enables quick screening of IAA conjugates in both previously characterized as well as uncharacterized species, and facilitates the identification of indolic compounds in general.


Asunto(s)
Ácidos Indolacéticos/química , Indoles/química , Plantas/química , Aminoácidos/química , Aminoácidos/aislamiento & purificación , Ácido Aspártico/química , Ácido Aspártico/aislamiento & purificación , Cromatografía Liquida , Cocos/química , Flores/química , Ginkgo biloba/química , Ácidos Indolacéticos/aislamiento & purificación , Indoles/aislamiento & purificación , Solanum lycopersicum/química , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Hojas de la Planta/química , Triptófano/química
8.
Photosynth Res ; 122(1): 69-86, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24880610

RESUMEN

A chlorosome is an antenna complex located on the cytoplasmic side of the inner membrane in green photosynthetic bacteria that contains tens of thousands of self-assembled bacteriochlorophylls (BChls). Green bacteria are known to incorporate various esterifying alcohols at the C-17 propionate position of BChls in the chlorosome. The effect of these functional substitutions on the biogenesis of the chlorosome has not yet been fully explored. In this report, we address this question by investigating various esterified bacteriochlorophyll c (BChl c) homologs in the thermophilic green non-sulfur bacterium Chloroflexus aurantiacus. Cultures were supplemented with exogenous long-chain alcohols at 52 °C (an optimal growth temperature) and 44 °C (a suboptimal growth temperature), and the morphology, optical properties and exciton transfer characteristics of chlorosomes were investigated. Our studies indicate that at 44 °C Cfl. aurantiacus synthesizes more carotenoids, incorporates more BChl c homologs with unsaturated and rigid polyisoprenoid esterifying alcohols and produces more heterogeneous BChl c homologs in chlorosomes. Substitution of phytol for stearyl alcohol of BChl c maintains similar morphology of the intact chlorosome and enhances energy transfer from the chlorosome to the membrane-bound photosynthetic apparatus. Different morphologies of the intact chlorosome versus in vitro BChl aggregates are suggested by small-angle neutron scattering. Additionally, phytol cultures and 44 °C cultures exhibit slow assembly of the chlorosome. These results suggest that the esterifying alcohol of BChl c contributes to long-range organization of BChls, and that interactions between BChls with other components are important to the assembly of the chlorosome. Possible mechanisms for how esterifying alcohols affect the biogenesis of the chlorosome are discussed.


Asunto(s)
Proteínas Bacterianas/química , Bacterioclorofilas/química , Chloroflexus/química , Orgánulos/metabolismo , Ficobiliproteínas/química , Alcoholes/metabolismo , Proteínas Bacterianas/metabolismo , Bacterioclorofilas/metabolismo , Carotenoides/metabolismo , Chloroflexus/fisiología , Cromatografía Liquida , Transferencia de Energía , Esterificación , Orgánulos/química , Ficobiliproteínas/metabolismo , Espectrometría de Masas en Tándem , Temperatura
9.
Methods Mol Biol ; 1083: 17-29, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24218207

RESUMEN

Polyphenolics are a chemically diverse class of plant specialized metabolites with strong antioxidant properties, and their consumption has been associated with improved human health. Metabolomic analysis of these compounds in both plant and mammalian samples has relied predominantly on liquid chromatography coupled to electrospray ionization mass spectrometry (LC-ESI-MS). Due to variable matrix effects across samples during ionization, the accuracy of this approach for quantifying compounds is greatly improved by incorporating stable isotope-labeled standards into the sample prior to analysis. However, commercially available, stable isotope-labeled, polyphenolic standards are both limited and costly. Here we present a protocol for generating stable isotope-labeled polyphenolics based on their deuteration by mild acid-catalyzed, electrophilic aromatic substitution. Importantly, this protocol is effective for generating stable isotope-labeled standards of many biologically relevant polyphenolics, both aglycones and the various conjugated forms alike.


Asunto(s)
Metaboloma , Metabolómica , Extractos Vegetales/química , Polifenoles/química , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Deuterio/química , Marcaje Isotópico , Espectrometría de Masas , Plantas/metabolismo , Extracción en Fase Sólida
10.
Plant J ; 74(5): 805-14, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23461796

RESUMEN

Pre-zygotic interspecific incompatibility (II) involves an active inhibition mechanism between the pollen of one species and the pistil of another. As a barrier to fertilization, II effectively prevents hybridization and maintains species identity. Transgenic ablation of the mature transmitting tract (TT) in Nicotiana tabacum resulted in the loss of inhibition of pollen tube growth in Nicotiana obtusifolia (synonym Nicotiana trigonophylla) and Nicotiana repanda. The role of the TT in the II interaction between N. tabacum and N. obtusifolia was characterized by evaluating N. obtusifolia pollen tube growth in normal and TT-ablated N. tabacum styles at various post-pollination times and developmental stages. The II activity of the TT slowed and then arrested N. obtusifolia pollen tube growth, and was developmentally synchronized. We hypothesize that proteins produced by the mature TT and secreted into the extracellular matrix inhibit interspecific pollen tubes. When extracts from the mature TT of N. tabacum were injected into the TT-ablated style prior to pollination, the growth of incompatible pollen tubes of N. obtusifolia and N. repanda was inhibited. The class III pistil-specific extensin-like protein (PELPIII) was consistently associated with specific inhibition of pollen tubes, and its requirement for II was confirmed through use of plants with antisense suppression of PELPIII. Inhibition of N. obtusifolia and N. repanda pollen tube growth required accumulation of PELPIII in the TT of N. tabacum, supporting PELPIII function in pre-zygotic II.


Asunto(s)
Flores/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Polen/metabolismo , Fertilización , Flores/crecimiento & desarrollo , Immunoblotting , Plantas Modificadas Genéticamente , Polen/crecimiento & desarrollo , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/metabolismo , Polinización , Especificidad de la Especie , Nicotiana/clasificación , Nicotiana/genética , Nicotiana/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA