Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Circulation ; 143(9): 935-948, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33307764

RESUMEN

BACKGROUND: In vascular endothelial cells, cysteine metabolism by the cystathionine γ lyase (CSE), generates hydrogen sulfide-related sulfane sulfur compounds (H2Sn), that exert their biological actions via cysteine S-sulfhydration of target proteins. This study set out to map the "S-sulfhydrome" (ie, the spectrum of proteins targeted by H2Sn) in human endothelial cells. METHODS: Liquid chromatography with tandem mass spectrometry was used to identify S-sulfhydrated cysteines in endothelial cell proteins and ß3 integrin intraprotein disulfide bond rearrangement. Functional studies included endothelial cell adhesion, shear stress-induced cell alignment, blood pressure measurements, and flow-induced vasodilatation in endothelial cell-specific CSE knockout mice and in a small collective of patients with endothelial dysfunction. RESULTS: Three paired sample sets were compared: (1) native human endothelial cells isolated from plaque-free mesenteric arteries (CSE activity high) and plaque-containing carotid arteries (CSE activity low); (2) cultured human endothelial cells kept under static conditions or exposed to fluid shear stress to decrease CSE expression; and (3) cultured endothelial cells exposed to shear stress to decrease CSE expression and treated with solvent or the slow-releasing H2Sn donor, SG1002. The endothelial cell "S-sulfhydrome" consisted of 3446 individual cysteine residues in 1591 proteins. The most altered family of proteins were the integrins and focusing on ß3 integrin in detail we found that S-sulfhydration affected intraprotein disulfide bond formation and was required for the maintenance of an extended-open conformation of the ß leg. ß3 integrin S-sulfhydration was required for endothelial cell mechanotransduction in vitro as well as flow-induced dilatation in murine mesenteric arteries. In cultured cells, the loss of S-sulfhydration impaired interactions between ß3 integrin and Gα13 (guanine nucleotide-binding protein subunit α 13), resulting in the constitutive activation of RhoA (ras homolog family member A) and impaired flow-induced endothelial cell realignment. In humans with atherosclerosis, endothelial function correlated with low H2Sn generation, impaired flow-induced dilatation, and failure to detect ß3 integrin S-sulfhydration, all of which were rescued after the administration of an H2Sn supplement. CONCLUSIONS: Vascular disease is associated with marked changes in the S-sulfhydration of endothelial cell proteins involved in mediating responses to flow. Short-term H2Sn supplementation improved vascular reactivity in humans highlighting the potential of interfering with this pathway to treat vascular disease.


Asunto(s)
Cadenas beta de Integrinas/química , Compuestos de Sulfhidrilo/química , Animales , Cromatografía Líquida de Alta Presión , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Cisteína/química , Disulfuros/análisis , Disulfuros/química , Células Endoteliales/citología , Células Endoteliales/metabolismo , Humanos , Sulfuro de Hidrógeno/farmacología , Cadenas beta de Integrinas/metabolismo , Mecanotransducción Celular , Ratones , Resistencia al Corte , Espectrometría de Masas en Tándem , Vasodilatación/efectos de los fármacos , Proteína de Unión al GTP rhoA/metabolismo
2.
Biochim Biophys Acta Bioenerg ; 1861(2): 148137, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31825809

RESUMEN

Electron transfer from all respiratory chain dehydrogenases of the electron transport chain (ETC) converges at the level of the quinone (Q) pool. The Q redox state is thus a function of electron input (reduction) and output (oxidation) and closely reflects the mitochondrial respiratory state. Disruption of electron flux at the level of the cytochrome bc1 complex (cIII) or cytochrome c oxidase (cIV) shifts the Q redox poise to a more reduced state which is generally sensed as respiratory stress. To cope with respiratory stress, many species, but not insects and vertebrates, express alternative oxidase (AOX) which acts as an electron sink for reduced Q and by-passes cIII and cIV. Here, we used Ciona intestinalis AOX xenotopically expressed in mouse mitochondria to study how respiratory states impact the Q poise and how AOX may be used to restore respiration. Particularly interesting is our finding that electron input through succinate dehydrogenase (cII), but not NADH:ubiquinone oxidoreductase (cI), reduces the Q pool almost entirely (>90%) irrespective of the respiratory state. AOX enhances the forward electron transport (FET) from cII thereby decreasing reverse electron transport (RET) and ROS specifically when non-phosphorylating. AOX is not engaged with cI substrates, however, unless a respiratory inhibitor is added. This sheds new light on Q poise signaling, the biological role of cII which enigmatically is the only ETC complex absent from respiratory supercomplexes but yet participates in the tricarboxylic acid (TCA) cycle. Finally, we delineate potential risks and benefits arising from therapeutic AOX transfer.


Asunto(s)
Aldehído Oxidasa/metabolismo , Ciona intestinalis/genética , Expresión Génica , Mitocondrias Cardíacas/enzimología , Especies Reactivas de Oxígeno/metabolismo , Aldehído Oxidasa/genética , Animales , Ciclo del Ácido Cítrico/genética , Transporte de Electrón/genética , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Ratones , Mitocondrias Cardíacas/genética , Consumo de Oxígeno/genética , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo
3.
Data Brief ; 21: 1302-1308, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30456248

RESUMEN

Upregulations of neuronal nitric oxide synthase (nNOS/NOS1) in the mouse brain upon aging and stress suggest a role of NO-dependent redox protein modifications for age-associated protein imbalances or dysfunctions. We generated a cell model, in which constitutive expression of nNOS in SH-SY5Y cells at a level comparable with mouse brain replicates the aging phenotype, that is, slowing of cell proliferation, cell enlargement, and expression of senescence markers. nNOS+ and MOCK cells were exposed to proteostasis stress by the treatment with rapamycin or serum-free starvation versus control conditions. To analyze NO-mediated S-nitrosylations (SNO) and other reversible protein modifications including disulfides and sulfoxides, we used complimentary proteomic approaches encompassing 2D-SNO-DIGE (differential gel electrophoresis), SNO-site identification (SNOSID), SNO Super-SILAC, SNO BIAM-Switch, and Redox-BIAM switch. The redox proteomes were analyzed using hybrid liquid chromatography/mass spectrometry (LC/MS). Full scan MS-data were acquired using Xcalibur, and raw mass spectra were analyzed using the proteomics software MaxQuant. The human reference proteome sets from uniprot were used as templates to identify peptides and proteins and quantify protein expression. The DiB data file contains MaxQuant output tables of the redox-modified proteins.The tables include peptide and protein identification, accession numbers, protein, and gene names, sequence coverage and quantification values of each sample. Differences in protein redox modifications in MOCK versus nNOS+ SH-SY5Y cells and interpretation of results are presented in (Valek et al., 2018).

4.
Data Brief ; 21: 1309-1314, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30456249

RESUMEN

Upregulations of neuronal nitric oxide synthase (nNOS/NOS1) in the mouse brain upon aging suggest a role in age-associated changes of protein homeostasis. We generated a cell model, in which constitutive expression of nNOS in SH-SY5Y cells at a level comparable to mouse brain replicates the aging phenotype i.e. slowing of cell proliferation, cell enlargement and expression of senescence markers. nNOS+ and MOCK cells were exposed to proteostasis stress by treatment with rapamycin or serum-free starvation. The proteomes were analyzed per SILAC or label-free using hybrid liquid chromatography/mass spectrometry (LC/MS). Full scan MS-data were acquired using Xcalibur, and raw mass spectra were analyzed using the proteomics software MaxQuant. The human reference proteome from uniprot was used as template to identify peptides and proteins and quantify protein expression. The DiB data file contains essential MaxQuant output tables and includes peptide and protein identification, accession numbers, protein and gene names, sequence coverage and quantification values of each sample. Differences in protein expression in MOCK versus nNOS+ SH-SY5Y cells and interpretation of results are presented in Valek et al. (2018). Raw mass spectra and MaxQuant output files have been deposited to the ProteomeXchange Consortium (Vizcaino et al., 2014) via the PRIDE partner repository with the dataset identifier PRIDE: PXD010538.

5.
Biochim Biophys Acta Mol Basis Dis ; 1863(11): 2727-2745, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28720486

RESUMEN

Affective and cognitive processing of nociception contributes to the development of chronic pain and vice versa, pain may precipitate psychopathologic symptoms. We hypothesized a higher risk for the latter with immanent neurologic diseases and studied this potential interrelationship in progranulin-deficient mice, which are a model for frontotemporal dementia, a disease dominated by behavioral abnormalities in humans. Young naïve progranulin deficient mice behaved normal in tests of short-term memory, anxiety, depression and nociception, but after peripheral nerve injury, they showed attention-deficit and depression-like behavior, over-activity, loss of shelter-seeking, reduced impulse control and compulsive feeding behavior, which did not occur in equally injured controls. Hence, only the interaction of 'pain x progranulin deficiency' resulted in the complex phenotype at young age, but neither pain nor progranulin deficiency alone. A deep proteome analysis of the prefrontal cortex and olfactory bulb revealed progranulin-dependent alterations of proteins involved in synaptic transport, including neurotransmitter transporters of the solute carrier superfamily. In particular, progranulin deficiency was associated with a deficiency of nuclear and synaptic zinc transporters (ZnT9/Slc30a9; ZnT3/Slc30a3) with low plasma zinc. Dietary zinc supplementation partly normalized the attention deficit of progranulin-deficient mice, which was in part reminiscent of autism-like and compulsive behavior of synaptic zinc transporter Znt3-knockout mice. Hence, the molecular studies point to defective zinc transport possibly contributing to progranulin-deficiency-associated psychopathology. Translated to humans, our data suggest that neuropathic pain may precipitate cognitive and psychopathological symptoms of an inherent, still silent neurodegenerative disease.


Asunto(s)
Proteínas Portadoras , Dolor Crónico , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Neuralgia , Traumatismos de los Nervios Periféricos , Zinc/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Dolor Crónico/genética , Dolor Crónico/metabolismo , Dolor Crónico/fisiopatología , Dolor Crónico/psicología , Granulinas , Transporte Iónico , Ratones , Ratones Noqueados , Neuralgia/genética , Neuralgia/metabolismo , Neuralgia/fisiopatología , Neuralgia/psicología , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/fisiopatología , Traumatismos de los Nervios Periféricos/psicología , Progranulinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA