Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Commun Biol ; 5(1): 845, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986202

RESUMEN

The dopaminergic midbrain is associated with reinforcement learning, motivation and decision-making - functions often disturbed in neuropsychiatric disorders. Previous research has shown that dopaminergic midbrain activity can be endogenously modulated via neurofeedback. However, the robustness of endogenous modulation, a requirement for clinical translation, is unclear. Here, we examine whether the activation of particular brain regions associates with successful regulation transfer when feedback is no longer available. Moreover, to elucidate mechanisms underlying effective self-regulation, we study the relation of successful transfer with learning (temporal difference coding) outside the midbrain during neurofeedback training and with individual reward sensitivity in a monetary incentive delay (MID) task. Fifty-nine participants underwent neurofeedback training either in standard (Study 1 N = 15, Study 2 N = 28) or control feedback group (Study 1, N = 16). We find that successful self-regulation is associated with prefrontal reward sensitivity in the MID task (N = 25), with a decreasing relation between prefrontal activity and midbrain learning signals during neurofeedback training and with increased activity within cognitive control areas during transfer. The association between midbrain self-regulation and prefrontal temporal difference and reward sensitivity suggests that reinforcement learning contributes to successful self-regulation. Our findings provide insights in the control of midbrain activity and may facilitate individually tailoring neurofeedback training.


Asunto(s)
Neurorretroalimentación , Autocontrol , Mapeo Encefálico , Humanos , Individualidad , Imagen por Resonancia Magnética , Mesencéfalo , Neurorretroalimentación/fisiología
2.
Neurosci Biobehav Rev ; 138: 104694, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35623447

RESUMEN

Amygdala NeuroFeedback (NF) have the potential of being a valuable non-invasive intervention tool in many psychiatric disporders. However, the feasibility and best practices of this method have not been systematically examined. The current article presents a review of amygdala-NF studies, an analytic summary of study design parameters, and examination of brain mechanisms related to successful amygdala-NF performance. A meta-analysis of 33 publications showed that real amygdala-NF facilitates learned modulation compared to control conditions. In addition, while variability in study dsign parameters is high, these design choices are implicitly organized by the targeted valence domain (positive or negative). However, in most cases the neuro-behavioral effects of targeting such domains were not directly assessed. Lastly, re-analyzing six data sets of amygdala-fMRI-NF revealed that successful amygdala down-modulation is coupled with deactivation of the posterior insula and nodes in the Default-Mode-Network. Our findings suggest that amygdala self-modulation can be acquired using NF. Yet, additional controlled studies, relevant behavioral tasks before and after NF intervention, and neural 'target engagement' measures are critically needed to establish efficacy and specificity. In addition, the fMRI analysis presented here suggest that common accounts regarding the brain network involved in amygdala NF might reflect unsuccessful modulation attempts rather than successful modulation.


Asunto(s)
Neurorretroalimentación , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Estudios de Factibilidad , Humanos , Imagen por Resonancia Magnética/métodos , Neurorretroalimentación/métodos
3.
Neuroimage ; 238: 118244, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34116148

RESUMEN

A variety of strategies are used to combine multi-echo functional magnetic resonance imaging (fMRI) data, yet recent literature lacks a systematic comparison of the available options. Here we compare six different approaches derived from multi-echo data and evaluate their influences on BOLD sensitivity for offline and in particular real-time use cases: a single-echo time series (based on Echo 2), the real-time T2*-mapped time series (T2*FIT) and four combined time series (T2*-weighted, tSNR-weighted, TE-weighted, and a new combination scheme termed T2*FIT-weighted). We compare the influences of these six multi-echo derived time series on BOLD sensitivity using a healthy participant dataset (N = 28) with four task-based fMRI runs and two resting state runs. We show that the T2*FIT-weighted combination yields the largest increase in temporal signal-to-noise ratio across task and resting state runs. We demonstrate additionally for all tasks that the T2*FIT time series consistently yields the largest offline effect size measures and real-time region-of-interest based functional contrasts and temporal contrast-to-noise ratios. These improvements show the promising utility of multi-echo fMRI for studies employing real-time paradigms, while further work is advised to mitigate the decreased tSNR of the T2*FIT time series. We recommend the use and continued exploration of T2*FIT for offline task-based and real-time region-based fMRI analysis. Supporting information includes: a data repository (https://dataverse.nl/dataverse/rt-me-fmri), an interactive web-based application to explore the data (https://rt-me-fmri.herokuapp.com/), and further materials and code for reproducibility (https://github.com/jsheunis/rt-me-fMRI).


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Emociones/fisiología , Humanos , Imagen por Resonancia Magnética , Neurorretroalimentación , Reproducibilidad de los Resultados
4.
Neuroimage ; 237: 118207, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34048901

RESUMEN

Real-time fMRI neurofeedback is an increasingly popular neuroimaging technique that allows an individual to gain control over his/her own brain signals, which can lead to improvements in behavior in healthy participants as well as to improvements of clinical symptoms in patient populations. However, a considerably large ratio of participants undergoing neurofeedback training do not learn to control their own brain signals and, consequently, do not benefit from neurofeedback interventions, which limits clinical efficacy of neurofeedback interventions. As neurofeedback success varies between studies and participants, it is important to identify factors that might influence neurofeedback success. Here, for the first time, we employed a big data machine learning approach to investigate the influence of 20 different design-specific (e.g. activity vs. connectivity feedback), region of interest-specific (e.g. cortical vs. subcortical) and subject-specific factors (e.g. age) on neurofeedback performance and improvement in 608 participants from 28 independent experiments. With a classification accuracy of 60% (considerably different from chance level), we identified two factors that significantly influenced neurofeedback performance: Both the inclusion of a pre-training no-feedback run before neurofeedback training and neurofeedback training of patients as compared to healthy participants were associated with better neurofeedback performance. The positive effect of pre-training no-feedback runs on neurofeedback performance might be due to the familiarization of participants with the neurofeedback setup and the mental imagery task before neurofeedback training runs. Better performance of patients as compared to healthy participants might be driven by higher motivation of patients, higher ranges for the regulation of dysfunctional brain signals, or a more extensive piloting of clinical experimental paradigms. Due to the large heterogeneity of our dataset, these findings likely generalize across neurofeedback studies, thus providing guidance for designing more efficient neurofeedback studies specifically for improving clinical neurofeedback-based interventions. To facilitate the development of data-driven recommendations for specific design details and subpopulations the field would benefit from stronger engagement in open science research practices and data sharing.


Asunto(s)
Neuroimagen Funcional , Aprendizaje Automático , Imagen por Resonancia Magnética , Neurorretroalimentación , Adulto , Humanos
5.
BMC Psychiatry ; 21(1): 87, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563242

RESUMEN

BACKGROUND: Several fMRI studies found hyperactivity in the hippocampus during pattern separation tasks in patients with Mild Cognitive Impairment (MCI; a prodromal stage of Alzheimer's disease). This was associated with memory deficits, subsequent cognitive decline, and faster clinical progression. A reduction of hippocampal hyperactivity with an antiepileptic drug improved memory performance. Pharmacological interventions, however, entail the risk of side effects. An alternative approach may be real-time fMRI neurofeedback, during which individuals learn to control region-specific brain activity. In the current project we aim to test the potential of neurofeedback to reduce hippocampal hyperactivity and thereby improve memory performance. METHODS: In a single-blind parallel-group study, we will randomize n = 84 individuals (n = 42 patients with MCI, n = 42 healthy elderly volunteers) to one of two groups receiving feedback from either the hippocampus or a functionally independent region. Percent signal change of the hemodynamic response within the respective target region will be displayed to the participant with a thermometer icon. We hypothesize that only feedback from the hippocampus will decrease hippocampal hyperactivity during pattern separation and thereby improve memory performance. DISCUSSION: Results of this study will reveal whether real-time fMRI neurofeedback is able to reduce hippocampal hyperactivity and thereby improve memory performance. In addition, the results of this study may identify predictors of successful neurofeedback as well as the most successful regulation strategies. TRIAL REGISTRATION: The study has been registered with clinicaltrials.gov on the 16th of July 2019 (trial identifier: NCT04020744 ).


Asunto(s)
Disfunción Cognitiva , Neurorretroalimentación , Anciano , Disfunción Cognitiva/terapia , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Ensayos Clínicos Controlados Aleatorios como Asunto , Método Simple Ciego
6.
Neuroimage ; 166: 198-208, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29100939

RESUMEN

Real-time fMRI neurofeedback is a feasible tool to learn the volitional regulation of brain activity. So far, most studies provide continuous feedback information that is presented upon every volume acquisition. Although this maximizes the temporal resolution of feedback information, it may be accompanied by some disadvantages. Participants can be distracted from the regulation task due to (1) the intrinsic delay of the hemodynamic response and associated feedback and (2) limited cognitive resources available to simultaneously evaluate feedback information and stay engaged with the task. Here, we systematically investigate differences between groups presented with different variants of feedback (continuous vs. intermittent) and a control group receiving no feedback on their ability to regulate amygdala activity using positive memories and feelings. In contrast to the feedback groups, no learning effect was observed in the group without any feedback presentation. The group receiving intermittent feedback exhibited better amygdala regulation performance when compared with the group receiving continuous feedback. Behavioural measurements show that these effects were reflected in differences in task engagement. Overall, we not only demonstrate that the presentation of feedback is a prerequisite to learn volitional control of amygdala activity but also that intermittent feedback is superior to continuous feedback presentation.


Asunto(s)
Amígdala del Cerebelo/fisiología , Emociones/fisiología , Neuroimagen Funcional/métodos , Aprendizaje/fisiología , Neurorretroalimentación/fisiología , Adulto , Amígdala del Cerebelo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Volición , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA