Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Front Endocrinol (Lausanne) ; 13: 1008275, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36325444

RESUMEN

Background: Many epidemiological studies have investigated the connection between coffee intake and bone mineral density (BMD), but the results are controversial. This study aimed to assess the association between caffeine consumption and lumbar BMD in adults aged 20-49. Methods: From a cross-sectional study based on a large sample of the National Health and Nutrition Examination Survey 2011-2018. After controlling for confounders, the weighted multivariate linear regression model was created and stratified by age, gender, and race for subgroup analysis. In addition, we simultaneously stratified analysis by age and sex and divided caffeine intake into quartiles to assess the association between coffee intake and BMD. Results: Caffeine intake was not significantly linked with lumbar BMD in this study of 7041 adults. In subgroup studies stratified by age, there was a significant correlation between lumbar BMD and caffeine consumption in participants aged 30-39 and 40-49. In females, there was a positive correlation between lumbar BMD and coffee consumption stratified by gender. When evaluated by race, the association between lumbar BMD and caffeine intake was independent of race. Consequently, when stratifying for age, sex, and coffee intake quartiles, a significant positive correlation was discovered between the fourth coffee intake quartile and lumbar BMD in females aged 30-39. In addition, a negative correlation was discovered between coffee consumption and lumbar BMD in males aged 40-49. Conclusions: Our research indicates that drinking coffee may benefit 30-39 women's lumbar BMD, but it may adversely affect men aged 40-49.


Asunto(s)
Densidad Ósea , Cafeína , Adulto , Masculino , Femenino , Humanos , Absorciometría de Fotón/métodos , Estudios Transversales , Cafeína/efectos adversos , Café/efectos adversos , Encuestas Nutricionales
2.
BMC Complement Med Ther ; 22(1): 274, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36261813

RESUMEN

BACKGROUND: Prediabetes is a hypermetabolic syndrome with blood sugar levels falling between the normal and diabetes. People with prediabetes have a significantly increased chances of developing diabetes, cardiovascular and cerebrovascular diseases, tumors, dementia, and other diseases in the future when compared to the healthy population. However, prediabetes is mainly treated based on lifestyle intervention, currently without targeted drug treatment plan. Traditional Chinese medicine (TCM), which has a longstanding experience, has been shown in clinical studies to be effective for the treatment of diabetes and its related complications. Furthermore, different dosage forms such as decoction and granule have developed gradually in clinical application. Preliminary studies have found that Huoxue-Jangtang Decoction (HJD), with good hypoglycemic and lipid-regulating effects, is potentially one of the complementary and alternative treatments for prediabetes. Therefore, this project intends to perform a prospective clinical study to observe the clinical effectiveness of HJD on prediabetes and the consistency of the efficacy of formula granules and the elixation. METHODS: This is a prospective, randomized, double-blind, and placebo-controlled clinical trial. A total of 183 participants are randomly assigned to HJD Formula Granules plus lifestyle intervention, HJD Elixation plus lifestyle intervention, and placebo plus lifestyle intervention. All subjects undergo 1 day of screening before participating in the study, followed by 84 days of drug intervention and observation. During and after treatment, the main outcome measures include fasting blood glucose and 2-hour postprandial blood glucose. DISCUSSION: This research attempts to verify the clinical efficacy and possible mechanism of HJD in the treatment of prediabetes, and prove the consistency of HJD Formula Granules with HJD Elixation. This study also aims to provide a treatment that is both effective and safe for prediabetic patients. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: ChiCTR2200060813, Registered 12 June 2022.


Asunto(s)
Diabetes Mellitus , Estado Prediabético , Humanos , Estado Prediabético/tratamiento farmacológico , Glucemia , Estudios Prospectivos , Hipoglucemiantes/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Lípidos , Ensayos Clínicos Controlados Aleatorios como Asunto
3.
Phytother Res ; 36(7): 2964-2981, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35583808

RESUMEN

Amelioration of neuroinflammation via modulating microglia is a promising approach for cerebral ischemia therapy. The aim of the present study was to explore gut-brain axis signals in berberine-modulating microglia polarization following cerebral ischemia. The potential pathway was determined through analyzing the activation of the vagus nerve, hydrogen sulfide (H2 S) metabolism, and cysteine persulfides of transient receptor potential vanilloid 1 (TRPV1) receptor. The cerebral microenvironment feature was explored with a metabolomics assay. The data indicated that berberine ameliorated behavioral deficiency in transient middle cerebral artery occlusion rats through modulating microglia polarization and neuroinflammation depending on microbiota. Enhanced vagus nerve activity following berberine treatment was blocked by antibiotic cocktails, capsazepine, or sodium molybdate, respectively. Berberine-induced H2 S production was responsible for vagus nerve stimulation achieved through assimilatory and dissimilatory sulfate reduction with increased synthetic enzymes. Sulfation of the TRPV1 receptor resulted in vagus nerve activation and promoted the c-fos and ChAT in the nucleus tractus solitaries with berberine. Sphingolipid metabolism is the primary metabolic characteristic with berberine in the cerebral cortex, hippocampus, and cerebral spinal fluid disrupted by antibiotics. Berberine, in conclusion, modulates microglia polarization in a microbiota-dependent manner. H2 S stimulates the vagus nerve through TRPV1 is responsible for the berberine-induced gut-brain axis signal transmission. Sphingolipid metabolism might mediate the neuroinflammation amelioration following vagus afferent fiber activation.


Asunto(s)
Berberina , Isquemia Encefálica , Sulfuro de Hidrógeno , Microbiota , Animales , Berberina/farmacología , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Microglía/metabolismo , Ratas , Esfingolípidos/metabolismo , Nervio Vago/metabolismo
4.
Drug Des Devel Ther ; 16: 931-950, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35391788

RESUMEN

Background: Abnormal sphingolipid metabolism is closely related to the occurrence and development of Alzheimer's disease (AD). With heat-clearing and detoxifying effects, Huanglian Jiedu decoction (HLJDD) has been used to treat dementia and improve learning and memory impairments. Purpose: To study the therapeutic effect of HLJDD on AD as it relates to sphingolipid metabolism. Methods: The level of sphingolipids in the brains of APP/PS1 mice and in the supernatant of ß-amyloid (Aß)25-35-induced BV2 microglia was detected by HPLC-QTOF-MS and HPLC-QTRAP-MS techniques, respectively. The co-expression of ionized calcium-binding adapter molecule 1 (Iba1) and Aß as well as four enzymes related to sphingolipid metabolism, including serine palmitoyltransferase 2 (SPTLC2), cer synthase 2 (CERS2), sphingomyelin phosphodiesterase 1 (SMPD1), and sphingomyelin synthase 1 (SGMS1), in the brains of APP/PS1 mice were evaluated by immunofluorescence double labelling. In addition, real-time quantitative reverse transcription-polymerase chain reaction was conducted to determine the mRNA expression of SPTLC2, CERS2, SMPD1, SGMS1, galactosylceramidase (GALC), and sphingosine kinase 2 (SPHK2) in Aß25-35-stimulated BV2 microglia. Results: Abnormal sphingolipid metabolism was observed both in APP/PS1 mouse brain tissues and Aß25-35-stimulated BV2 cells. The levels of sphingosine, sphinganine, sphingosine-1-phosphate, sphinganine-1-phosphate and sphingomyelin were significantly reduced, while the levels of ceramide-1-phosphate, ceramide, lactosylceramide and hexosylceramide significantly increased in Aß25-35-stimulated BV2 cells. In AD mice, more microglia were clustered in the Aß-positive region. The decreased level of SGMS1 and increased levels of CERS2, SPTLC and SMPD1 were also found. In addition, the expressions of SPTLC2, CERS2, and SMPD1 in Aß25-35-stimulated BV2 cells were increased significantly, while the expressions of GALC, SPHK2, and SGMS1 were decreased. These changes all showed a significant correction after HLJDD treatment. Conclusion: HLJDD is a good candidate for treating AD. This study provides a novel perspective on the potential roles of the sphingolipid metabolism in AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Ceramidas/metabolismo , Ceramidas/uso terapéutico , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Ratones , Ratones Transgénicos , Microglía/metabolismo , Fosfatos/uso terapéutico , Esfingolípidos
5.
Drug Des Devel Ther ; 16: 325-342, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35173416

RESUMEN

BACKGROUND: Serious mental illness is a disease with complex etiological factors that requires multiple interventions within a holistic disease system. With heat-clearing and detoxifying effects, Coptis chinensis Franch. is mainly used to treat serious mental illness. AIM OF THE STUDY: To explore the underlying mechanisms and therapeutic effect by which Coptis chinensis Franch. treats serious mental illnesses at a holistic level. METHODS: A viable network pharmacology approach was adopted to obtain the potential active ingredients of Coptis chinensis Franch., and serious mental illnesses-related targets and signaling pathways. The interactions between crucial target HTR2A and constituents were verified by molecular docking, and the dynamic behaviors of binding were studied by molecular dynamics simulation. In addition, the anti-anxiety effect of Rhizoma Coptidis (the roots of Coptis chinensis Franch.) extract on lipopolysaccharide-stimulated mice was verified. The anxiety-like behavior was measured through the elevated plus-maze test, light-dark box test, and open field test. Radioimmunoassays detected the levels of interleukin-1ß, tumor necrosis factor-α, interleukin-10, interleukin-4, 5-hydroxytryptamine, and dopamine in the serum, hippocampus, medial prefrontal cortex, and amygdala. Meanwhile, immunohistochemistry protocols for the assessment of neuronal loss (neuron-specific nuclear protein) and synaptic alterations (Synapsin I) were performed in the hippocampus. RESULTS: Based on scientific analysis of the established networks, serious mental illnesses-related targets mostly participated in the calcium signaling pathway, cyclic adenosine monophosphate signaling pathway, mitogen-activated protein kinase signaling pathway, serotonergic and dopaminergic synapse. Molecular docking and molecular dynamics simulation studies illustrated that berberine, epiberberine, palmatine, and coptisine presented favorable binding patterns with HTR2A. The in vivo experiments confirmed that Rhizoma Coptidis extract ameliorated anxiety-like behaviors by improving the survival of neurons, regulating synaptic plasticity, and inhibiting neuroinflammation. CONCLUSION: These findings in the present study led to potential preventative and therapeutic strategies for serious mental illnesses with traditional Chinese medicine.


Asunto(s)
Coptis , Medicamentos Herbarios Chinos , Trastornos Mentales , Animales , Coptis/química , Coptis chinensis , Medicamentos Herbarios Chinos/farmacología , Ratones , Simulación del Acoplamiento Molecular , Farmacología en Red
6.
Front Pharmacol ; 12: 619288, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746756

RESUMEN

Depressive disorder is a common mental disorder characterized by depressed mood and loss of interest or pleasure. As the Herbal medicines are mainly used as complementary and alternative therapy for depression. This study aimed at exploring antidepressant activity of Huang-lian Jie-du Decoction (HLJDD), and evaluating active components and potential depression-associated targets. HLJDD was administered on chronic unpredictable mild stress-induced (CUMS) depressive mice. Behavior evaluation was performed through force swimming test (FST), novelty-suppressed feeding test (NSF), and open field test (OFT). Active components of HLJDD, potential targets, and metabolic pathways involved in depression were explored through systemic biology-based network pharmacology assay, molecular docking and metabonomics. FST assay showed that CUMS mice administered with HLJDD had significantly shorter immobility time compared with control mice. Further, HLJDD alleviated feeding latency of CUMS mice in NSFand increased moving distance and duration in OFT. In the following network pharmacology assay, thirty-eight active compounds in HLJDD were identified based on drug-like characteristics, and pharmacokinetics and pharmacodynamics profiles. Moreover, forty-eight molecular targets and ten biochemical pathways were uncovered through molecular docking and metabonomics. GRIN2B, DRD, PRKCA, HTR, MAOA, SLC6A4, GRIN2A, and CACNA1A are implicated in inhibition of depressive symptoms through modulating tryptophan metabolism, serotonergic and dopaminergic synaptic activities, cAMP signaling pathway, and calcium signaling pathway. Further network pharmacology-based analysis showed a correlation between HLJDD and tryptophan metabolism. A total of thirty-seven active compounds, seventy-six targets, and sixteen biochemical pathways were involved in tryptophan metabolism. These findings show that HLJDD acts on potential targets such as SLC6A4, HTR, INS, MAO, CAT, and FoxO, PI3K/Akt, calcium, HIF-1, and mTOR signaling pathways, and modulates serotoninergic and dopaminergic synaptic functions. In addition, metabonomics showed that tryptophan metabolism is the primary target for HLJDD in CUMS mice. The findings of the study show that HLJDD exhibited antidepressant effects. SLC6A4 and MAOA in tryptophan metabolism were modulated by berberine, baicalein, tetrahydroberberine, candicine and may be the main antidepressant targets for HLJDD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA