RESUMEN
Luteinizing hormone (LH) secretion during the ovarian cycle is governed by fluctuations in circulating estradiol (E2) that oppositely regulate kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC) of the hypothalamus. However, how these effects are orchestrated to achieve fertility is unknown. Here, we have tested the hypothesis that AVPV and ARC neurons have different sensitivities to E2 to coordinate changes in LH secretion. Cycling and ovariectomized rats with low and high E2 levels were used. As an index of E2 responsiveness, progesterone receptor (PR) was expressed only in the AVPV of rats with high E2, showing the preovulatory LH surge. On the other hand, kisspeptin neurons in the ARC responded to low E2 levels sufficient to suppress LH release. Notably, the Esr1/Esr2 ratio of gene expression was higher in the ARC than AVPV, regardless of E2 levels. Accordingly, the selective pharmacological activation of estrogen receptor α (ERα) required lower doses to induce PR in the ARC. The activation of ERß, in turn, amplified E2-induced PR expression in the AVPV and the LH surge. Thus, ARC and AVPV neurons are differently responsive to E2. Lower E2 levels activate ERα in the ARC, whereas ERß potentiates the E2 positive feedback in the AVPV, which appears related to the differential Esr1/Esr2 ratio in these 2 brain areas. Our findings provide evidence that the distinct expression of ER isoforms in the AVPV and ARC plays a key role in the control of periodic secretion of LH required for fertility in females.
Asunto(s)
Estradiol , Kisspeptinas , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Estradiol/metabolismo , Estradiol/farmacología , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Femenino , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Hormona Luteinizante/metabolismo , Isoformas de Proteínas/metabolismo , Ratas , Receptores de Estrógenos/metabolismoRESUMEN
Dopamine from tuberoinfundibular dopaminergic (TIDA) neurones tonically inhibits prolactin (PRL) secretion. Lactational hyperprolactinaemia is associated with a reduced activity of TIDA neurones. However, it remains controversial whether the suckling-induced PRL surge is driven by an additional decrease in dopamine release or by stimulation from a PRL-releasing factor. In the present study, we further investigated the role of dopamine in the PRL response to suckling. Non-lactating (N-Lac), lactating 4 hour apart from pups (Lac), Lac with pups return and suckling (Lac+S), and post-lactating (P-Lac) rats were evaluated. PRL levels were elevated in Lac rats and increased linearly within 30 minutes of suckling in Lac+S rats. During the rise in PRL levels, dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the median eminence (ME) and neurointermediate lobe of the pituitary did not differ between Lac+S and Lac rats. However, dopamine and DOPAC were equally decreased in Lac and Lac+S compared to N-Lac and P-Lac rats. Suckling, in turn, reduced phosphorylation of tyrosine hydroxylase in the ME of Lac+S. Domperidone and bromocriptine were used to block and activate pituitary dopamine D2 receptors, respectively. Domperidone increased PRL secretion in both N-Lac and Lac rats, and suckling elicited a robust surge of PRL over the high basal levels in domperidone-treated Lac+S rats. Conversely, bromocriptine blocked the PRL response to suckling. The findings obtained in the present study provide evidence that dopamine synthesis and release are tonically reduced during lactation, whereas dopamine is still functional with respect to inhibiting PRL secretion. However, there appears to be no further reduction in dopamine release associated with the suckling-induced rise in PRL. Instead, the lower dopaminergic tone during lactation appears to be required to sensitise the pituitary to a suckling-induced PRL-releasing factor.
Asunto(s)
Animales Lactantes/fisiología , Dopamina/fisiología , Hipotálamo/fisiología , Lactancia/fisiología , Prolactina/metabolismo , Ácido 3,4-Dihidroxifenilacético/metabolismo , Animales , Bromocriptina/farmacología , Domperidona/farmacología , Dopamina/metabolismo , Agonistas de Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Femenino , Hipotálamo/efectos de los fármacos , Eminencia Media/efectos de los fármacos , Eminencia Media/metabolismo , Adenohipófisis Porción Intermedia/efectos de los fármacos , Adenohipófisis Porción Intermedia/metabolismo , Hormona Liberadora de Prolactina/metabolismo , Ratas , Ratas Wistar , Tirosina 3-Monooxigenasa/metabolismoRESUMEN
Hyperprolactinemia causes infertility by suppressing gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion. Because effects of prolactin (PRL) on the hypothalamus usually require estradiol (E2), we investigated the role of E2 in PRL-induced suppression of LH pulses. Ovariectomized (OVX) rats treated with oil or E2 (OVXâ +â E2) received a subcutaneous injection of ovine PRL (oPRL) 30 minutes before serial measurement of LH in the tail blood by enzyme-linked immunosorbent assay. E2 reduced pulsatile LH secretion. oPRL at 1.5 mg/kg further reduced LH pulse frequency in OVXâ +â E2 but had no effect in OVX rats. The higher dose of 6-mg/kg oPRL decreased LH pulse frequency in both OVX and OVXâ +â E2 rats, whereas pulse amplitude and mean LH levels were lowered only in OVXâ +â E2 rats. Kisspeptin immunoreactivity and Kiss1 messenger ribonucleic acid (mRNA) levels were decreased in the arcuate nucleus (ARC) of OVXâ +â E2 rats. oPRL decreased both kisspeptin peptide and gene expression in the ARC of OVX rats but did not alter the already low levels in OVXâ +â E2 rats. In the anteroventral periventricular nucleus, oPRL did not change kisspeptin immunoreactivity and, paradoxically, increased Kiss1 mRNA only in OVXâ +â E2 rats. Moreover, oPRL effectively reduced Gnrh expression regardless of E2 treatment. In this study we used tail-tip blood sampling to determine the acute effect of PRL on LH pulsatility in female rats. Our findings characterize the role of E2 in the PRL modulation of hypothalamic components of the gonadal axis and LH release, demonstrating that E2 potentiates but is not essential for the suppression of pulsatile LH secretion caused by hyperprolactinemia.