Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Glia ; 65(5): 773-789, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28205335

RESUMEN

Hypothalamic tanycytes are glial-like glucosensitive cells that contact the cerebrospinal fluid of the third ventricle, and send processes into the hypothalamic nuclei that control food intake and body weight. The mechanism of tanycyte glucosensing remains undetermined. While tanycytes express the components associated with the glucosensing of the pancreatic ß cell, they respond to nonmetabolisable glucose analogues via an ATP receptor-dependent mechanism. Here, we show that tanycytes in rodents respond to non-nutritive sweeteners known to be ligands of the sweet taste (Tas1r2/Tas1r3) receptor. The initial sweet tastant-evoked response, which requires the presence of extracellular Ca2+ , leads to release of ATP and a larger propagating Ca2+ response mediated by P2Y1 receptors. In Tas1r2 null mice the proportion of glucose nonresponsive tanycytes was greatly increased in these mice, but a subset of tanycytes retained an undiminished sensitivity to glucose. Our data demonstrate that the sweet taste receptor mediates glucosensing in about 60% of glucosensitive tanycytes while the remaining 40% of glucosensitive tanycytes use some other, as yet unknown mechanism.


Asunto(s)
Glucosa/metabolismo , Hipotálamo/metabolismo , Gusto/fisiología , Animales , Calcio/metabolismo , Femenino , Ratones Endogámicos C57BL , Neuroglía/metabolismo , Receptores Acoplados a Proteínas G/deficiencia , Receptores Purinérgicos P2Y1/metabolismo
2.
Hum Mol Genet ; 22(1): 110-23, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23026748

RESUMEN

Phosphorylated creatine (Cr) serves as an energy buffer for ATP replenishment in organs with highly fluctuating energy demand. The central role of Cr in the brain and muscle is emphasized by severe neurometabolic disorders caused by Cr deficiency. Common symptoms of inborn errors of creatine synthesis or distribution include mental retardation and muscular weakness. Human mutations in l-arginine:glycine amidinotransferase (AGAT), the first enzyme of Cr synthesis, lead to severely reduced Cr and guanidinoacetate (GuA) levels. Here, we report the generation and metabolic characterization of AGAT-deficient mice that are devoid of Cr and its precursor GuA. AGAT-deficient mice exhibited decreased fat deposition, attenuated gluconeogenesis, reduced cholesterol levels and enhanced glucose tolerance. Furthermore, Cr deficiency completely protected from the development of metabolic syndrome caused by diet-induced obesity. Biochemical analyses revealed the chronic Cr-dependent activation of AMP-activated protein kinase (AMPK), which stimulates catabolic pathways in metabolically relevant tissues such as the brain, skeletal muscle, adipose tissue and liver, suggesting a mechanism underlying the metabolic phenotype. In summary, our results show marked metabolic effects of Cr deficiency via the chronic activation of AMPK in a first animal model of AGAT deficiency. In addition to insights into metabolic changes in Cr deficiency syndromes, our genetic model reveals a novel mechanism as a potential treatment option for obesity and type 2 diabetes mellitus.


Asunto(s)
Amidinotransferasas/genética , Síndrome Metabólico/genética , Adenilato Quinasa/metabolismo , Tejido Adiposo , Animales , Peso Corporal , Encéfalo/metabolismo , Creatina/metabolismo , Activación Enzimática , Hipotálamo/enzimología , Espectroscopía de Resonancia Magnética , Síndrome Metabólico/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA