Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biopolymers ; 105(11): 819-31, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27422378

RESUMEN

For the optimal use of ß-lactoglobulin nanofibrils as a raw material in biological composites an in-depth knowledge of their interactions with other constituents is necessary. To understand the effect of electrostatic interactions on the morphology of resulting complexes, ß-lactoglobulin nanofibrils were allowed to interact with pectins in which the amount of available negative charge was controlled by selecting their degree of methylesterification. In this study, citrus pectins having different degrees of methylesterification (∼48, 67, 86, and 97%) were selected and interacted with nanofibrils at pH 2 and pH 3, where they possess a net positive charge. Electrostatic complexes formed between ß-lactoglobulin nanofibrils and all pectin types, except for the sample having a degree of methylesterification of 97%. The morphology of these complexes, however, differed significantly with the degree of methylesterification of the pectin, its concentration, and the pH of the medium, revealing that distinct desired biological architectures can be attained relatively easily through manipulating the electrostatic interactions. Interestingly, the pectin with a degree of methylesterification of 86% was found to crosslink the ß-lactoglobulin nanofibrils into ordered 'nanotapes'.


Asunto(s)
Lactoglobulinas/química , Nanofibras/química , Pectinas/química , Citrus/química , Concentración de Iones de Hidrógeno
2.
Soft Matter ; 12(3): 756-68, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26517088

RESUMEN

Controlling the self-assembly of individual supramolecular entities, such as amyloid fibrils, into hierarchical architectures enables the 'bottom-up' fabrication of useful bionanomaterials. Here, we present the hierarchical assembly of ß-lactoglobulin nanofibrils into the form of 'nanotapes' in the presence of a specific pectin with a high degree of methylesterification. The nanotapes produced were highly ordered, and had an average width of 180 nm at pH 3. Increasing the ionic strength or the pH of the medium led to the disassembly of nanotapes, indicating that electrostatic interactions stabilised the nanotape architecture. Small-angle X-ray scattering experiments conducted on the nanotapes showed that adequate space is available between adjacent nanofibrils to accommodate pectin molecules. To locate the interaction sites on the pectin molecule, it was subjected to endopolygalacturonase digestion, and the resulting products were analysed using capillary electrophoresis and size-exclusion chromatography for their charge and molecular weight, respectively. Results suggested that the functional pectin molecules carry short (<10 residues) enzyme-susceptible blocks of negatively charged, non-methylesterified galacturonic acid residues in the middle of their homogalacturonan backbones (and possibly near their ends), that specifically bind to sites on the nanofibrils. Blocking the interaction sites on the nanofibril surface using small oligomers of non-methylesterified galacturonic acid residues similar in size to the interaction sites of the pectin molecule decreased the nanotape formation, indicating that site-specific electrostatic interactions are vital for the cross-linking of nanofibrils. We propose a structural model for the pectin-cross-linked ß-lactoglobulin nanotapes, the elements of which will inform the future design of bionanomaterials.


Asunto(s)
Ácidos Hexurónicos/química , Lactoglobulinas/química , Nanofibras/química , Nanoestructuras/química , Pectinas/química , Animales , Bovinos , Esterificación , Concentración de Iones de Hidrógeno , Metilación , Nanofibras/ultraestructura , Nanoestructuras/ultraestructura , Concentración Osmolar , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA