Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Redox Biol ; 38: 101783, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33202301

RESUMEN

Preterm birth is still a major health problem and maternal inflammation has been shown to play a role. The combination of maternal inflammation and neonatal hyperoxia contributes to epigenetic changes that influence gene expression and the development of bronchopulmonary dysplasia (BPD). We have previously demonstrated suppression of miR-29b and increases in DNA methylation in infants with severe BPD and in our mouse model of maternal inflammation and neonatal hyperoxia exposure. The present studies further explored epigenetic changes in the murine model to include histone methylation. We identified a global suppression of histone methylation in exposed mice and validated decreases in expression in well-defined histone modifications, specifically H3K4me3, H3K27me3, H3K36me2, H3K79me2, and H4K20me3. We further tested the hypothesis that restoration of miR-29b expression would restore the histone methylation marks. Using lipid nanoparticle delivery of miR-29b, partial to full methylation was reestablished for H3K4me3, H3K27me3, and H4K20me3; all tri-methylation marks. To identify the causes of decreased methylation in exposed mice, we measured commonly identified methylases and demethylases. We found a decreased expression of SUV40H2, a methylase primarily associated with H4K20me3. Further studies are needed to identify the causes for the decreased global histone methylation and potential therapeutic opportunities.


Asunto(s)
MicroARNs , Nacimiento Prematuro , Animales , Metilación de ADN , Suplementos Dietéticos , Femenino , Histonas/metabolismo , Inflamación/genética , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Embarazo
2.
Mol Cancer Ther ; 15(9): 2220-31, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27496138

RESUMEN

Profilin 1, cofilin 1, and vasodialator-stimulated phosphoprotein (VASP) are actin-binding proteins (ABP) that regulate actin remodeling and facilitate cancer cell metastases. miR-17-92 is highly expressed in metastatic tumors and profilin1 and cofilin1 are predicted targets. Docosahexaenoic acid (DHA) inhibits cancer cell proliferation and adhesion. These studies tested the hypothesis that the metastatic phenotype is driven by changes in ABPs including alternative phosphorylation and/or changes in subcellular localization. In addition, we tested the efficacy of DHA supplementation to attenuate or inhibit these changes. Human lung cancer tissue sections were analyzed for F-actin content and expression and cellular localization of profilin1, cofilin1, and VASP (S157 or S239 phosphorylation). The metastatic phenotype was investigated in A549 and MLE12 cells lines using 8 Br-cAMP as a metastasis inducer and DHA as a therapeutic agent. Migration was assessed by wound assay and expression measured by Western blot and confocal analysis. miR-17-92 expression was measured by qRT-PCR. Results indicated increased expression and altered cellular distribution of profilin1/VASP(pS157), but no changes in cofilin1/VASP(pS239) in the human malignant tissues compared with normal tissues. In A549 and MLE12 cells, the expression patterns of profilin1/VASP(pS157) or cofilin1/VASP(pS239) suggested an interaction in regulation of actin dynamics. Furthermore, DHA inhibited cancer cell migration and viability, ABP expression and cellular localization, and modulated expression of miR-17-92 in A549 cells with minimal effects in MLE12 cells. Further investigations are warranted to understand ABP interactions, changes in cellular localization, regulation by miR-17-92, and DHA as a novel therapeutic. Mol Cancer Ther; 15(9); 2220-31. ©2016 AACR.


Asunto(s)
Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Cofilina 1/genética , Cofilina 1/metabolismo , Expresión Génica , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Profilinas/genética , Profilinas/metabolismo , Apoptosis/genética , Biomarcadores , Línea Celular Tumoral , Movimiento Celular/genética , Núcleo Celular/metabolismo , AMP Cíclico/metabolismo , Deshidroepiandrosterona/administración & dosificación , Suplementos Dietéticos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroARNs/genética , Metástasis de la Neoplasia , Fosforilación/efectos de los fármacos , Unión Proteica , Transporte de Proteínas/efectos de los fármacos
3.
Sci Rep ; 6: 22276, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26940787

RESUMEN

Persistent macrophages were observed in the lungs of murine offspring exposed to maternal LPS and neonatal hyperoxia. Maternal docosahexaenoic acid (DHA) supplementation prevented the accumulation of macrophages and improved lung development. We hypothesized that these macrophages are responsible for pathologies observed in this model and the effects of DHA supplementation. Primary macrophages were isolated from adult mice fed standard chow, control diets, or DHA supplemented diets. Macrophages were exposed to hyperoxia (O2) for 24 h and LPS for 6 h or 24 h. Our data demonstrate significant attenuation of Notch 1 and Jagged 1 protein levels in response to DHA supplementation in vivo but similar results were not evident in macrophages isolated from mice fed standard chow and supplemented with DHA in vitro. Co-culture of activated macrophages with MLE12 epithelial cells resulted in the release of high mobility group box 1 and leukotriene B4 from the epithelial cells and this release was attenuated by DHA supplementation. Collectively, our data indicate that long term supplementation with DHA as observed in vivo, resulted in deceased Notch 1/Jagged 1 protein expression however, DHA supplementation in vitro was sufficient to suppress release LTB4 and to protect epithelial cells in co-culture.


Asunto(s)
Ácidos Docosahexaenoicos/administración & dosificación , Células Epiteliales/fisiología , Hiperoxia/prevención & control , Inmunosupresores/administración & dosificación , Proteína Jagged-1/metabolismo , Macrófagos/efectos de los fármacos , Receptor Notch1/metabolismo , Animales , Células Cultivadas , Técnicas de Cocultivo , Ácidos Docosahexaenoicos/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Hiperoxia/inmunología , Inmunosupresores/farmacología , Mediadores de Inflamación/metabolismo , Proteína Jagged-1/genética , Pulmón/fisiología , Macrófagos/inmunología , Masculino , Exposición Materna/efectos adversos , Ratones , Ratones Endogámicos C3H , Receptor Notch1/genética , Transducción de Señal/efectos de los fármacos
4.
Am J Physiol Lung Cell Mol Physiol ; 309(5): L441-8, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26138643

RESUMEN

We have previously shown that an adverse perinatal environment significantly alters lung growth and development and results in persistently altered cardiopulmonary physiology in adulthood. Our model of maternal LPS treatment followed by 14 days of neonatal hyperoxia exposure causes severe pulmonary disease characterized by permanent decreases in alveolarization and diffuse interstitial fibrosis. The current investigations tested the hypothesis that dysregulation of Notch signaling pathways contributes to the permanently altered lung phenotype in our model and that the improvements we have observed previously with maternal docosahexaenoic acid (DHA) supplementation are mediated through normalization of Notch-related protein expression. Results indicated that inflammation (IL-6 levels) and oxidation (F2a-isoprostanes) persisted through 8 wk of life in mice exposed to LPS/O2 perinatally. These changes were attenuated by maternal DHA supplementation. Modest but inconsistent differences were observed in Notch-pathway proteins Jagged 1, DLL 1, PEN2, and presenilin-2. We detected substantial increases in markers of apoptosis including PARP-1, APAF-1, caspase-9, BCL2, and HMGB1, and these increases were attenuated in mice that were nursed by DHA-supplemented dams during the perinatal period. Although Notch signaling is not significantly altered at 8 wk of age in mice with perinatal exposure to LPS/O2, our findings indicate that persistent apoptosis continues to occur at 8 wk of age. We speculate that ongoing apoptosis may contribute to persistently altered lung development and may further enhance susceptibility to additional pulmonary disease. Finally, we found that maternal DHA supplementation prevented sustained inflammation, oxidation, and apoptosis in our model.


Asunto(s)
Apoptosis/efectos de los fármacos , Ácidos Docosahexaenoicos/farmacología , Inflamación/tratamiento farmacológico , Enfermedades Pulmonares/tratamiento farmacológico , Pulmón/patología , Receptores Notch/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Hipoxia de la Célula/fisiología , Suplementos Dietéticos , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/uso terapéutico , Femenino , Proteína HMGB1/metabolismo , Hiperoxia/patología , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Interleucina-6/metabolismo , Proteína Jagged-1 , Lipopolisacáridos , Enfermedades Pulmonares/patología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C3H , Estrés Oxidativo/efectos de los fármacos , Presenilina-1/metabolismo , Presenilina-2/metabolismo , Proteínas Serrate-Jagged , Transducción de Señal/efectos de los fármacos
5.
J Nutr ; 144(3): 258-66, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24453131

RESUMEN

The preterm infant is often exposed to maternal and neonatal inflammatory stimuli and is born with immature lungs, resulting in a need for oxygen therapy. Nutritional intervention with docosahexaenoic acid (DHA; 6.3 g/kg of diet) has been shown to attenuate inflammation in various human diseases. Previous studies demonstrated that maternal DHA supplementation during late gestation and lactation attenuated hyperoxic lung injury in newborn mouse pups. In the present studies, we tested the hypothesis that DHA supplementation to the dam would reduce hyperoxic lung injury and growth deficits in a more severe model of systemic maternal inflammation, including lipopolysaccharide (LPS) and neonatal hyperoxia exposure. On embryonic day 16, dams were placed on DHA (6.3 g DHA/kg diet) or control diets and injected with saline or LPS. Diets were maintained through weaning. At birth, pups were placed in room air or hyperoxia for 14 d. Improvements in birth weight (P < 0.01), alveolarization (P ≤ 0.01), and pulmonary function (P ≤ 0.03) at 2 and 8 wk of age were observed in pups exposed to perinatal inflammation and born to DHA-supplemented dams compared with control diet-exposed pups. These improvements were associated with decreases in tissue macrophage numbers (P < 0.01), monocyte chemoattractant protein-1 expression (P ≤ 0.05), and decreases in soluble receptor for advanced glycation end products concentrations (P < 0.01) at 2 and 8 wk. Furthermore, DHA supplementation attenuated pulmonary fibrosis, which was associated with the reduction of matrix metalloproteinases 2, 3, and 8 (P ≤ 0.03) and collagen mRNA (P ≤ 0.05), and decreased collagen (P < 0.01) and vimentin (P ≤ 0.03) protein concentrations. In a model of severe inflammation, maternal DHA supplementation lessened inflammation and improved lung growth in the offspring. Maternal supplementation with DHA may be a therapeutic strategy to reduce neonatal inflammation.


Asunto(s)
Suplementos Dietéticos , Ácidos Docosahexaenoicos/administración & dosificación , Retardo del Crecimiento Fetal/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Pulmón/efectos de los fármacos , Fenómenos Fisiologicos Nutricionales Maternos , Animales , Animales Recién Nacidos , Peso al Nacer , Quimiocina CCL2/metabolismo , Dieta , Modelos Animales de Enfermedad , Femenino , Desarrollo Fetal/efectos de los fármacos , Fibrosis/tratamiento farmacológico , Fibrosis/metabolismo , Hiperoxia/tratamiento farmacológico , Lipopolisacáridos/efectos adversos , Pulmón/metabolismo , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Metaloproteinasa 8 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Fosforilación , ARN Mensajero/metabolismo , Proteína Smad2/metabolismo , Proteína smad3/metabolismo
6.
Exp Lung Res ; 37(3): 155-61, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21128861

RESUMEN

The aims of this study were to test the hypothesis that mice expressing mitochondrially targeted human glutathione reductase (GR) driven by a surfactant protein C promoter ((spc-mt)hGR) are functionally riboflavin deficient and that this deficiency exacerbates hyperoxic lung injury. The authors further hypothesized that dietary supplementation with riboflavin (FADH) will improve the bioactivity of GR, thus enhancing resistance to hyperoxic lung injury. Transgenic (mt-spc)hGR mice and their nontransgenic littermates were fed control or riboflavin-supplemented diets upon weaning. At 6 weeks of age the mice were exposed to either room air (RA) or >95% O(2) for up to 84 hours. GR activities (with and without exogenous FADH) and GR protein levels were measured in lung tissue homogenates. Glutathione (GSH) and glutathione disulfide (GSSG) concentrations were assayed to identify changes in GR activity in vivo. Lung injury was assessed by right lung to body weight ratios and bronchoalveolar lavage protein concentrations. The data showed that enhanced GR activity in the mitochondria of lung type II cells does not protect adult mice from hyperoxic lung injury. Furthermore, the addition of riboflavin to the diets of (spc-mt)hGR mice neither enhances GR activities nor offers protection from hyperoxic lung injury. The results indicated that modulation of mitochondrial GR activity in lung type II cells is not an effective therapy to minimize hyperoxic lung injury.


Asunto(s)
Glutatión Reductasa/metabolismo , Hiperoxia/prevención & control , Lesión Pulmonar/prevención & control , Riboflavina/administración & dosificación , Animales , Glutatión/metabolismo , Glutatión Reductasa/genética , Humanos , Hiperoxia/complicaciones , Hiperoxia/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Lesión Pulmonar/complicaciones , Lesión Pulmonar/metabolismo , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas , Proteína C Asociada a Surfactante Pulmonar/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deficiencia de Riboflavina/complicaciones , Deficiencia de Riboflavina/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA