Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Med Rep ; 22(4): 3525-3532, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32945423

RESUMEN

α­glucosidase is a key enzyme that plays a role in glucose absorption in the gastrointestinal tract, and the inhibition of its activity induces the prevention of postprandial hyperglycemia. Several α­glucosidase inhibitors have been used as medicines for type 2 diabetes, but a similar effect is observed in natural resources, including traditional herbs and their phytochemicals. To identify the presence of the α­glucosidase inhibitory activity in herbs, in which various functional effects have been known to occur, the present study investigated the effects of hot­water extracts of 26 types of herbs on α­glucosidase activity in an in vitro assay. The results indicated significant increases in the inhibition of α­glucosidase activity in 1,000 µg/ml olive (P<0.01), white willow (P<0.01) and red rooibos hot­water extracts. Furthermore, ≥50% inhibition of α­glucosidase activity was determined to be significant in 1,000 µg/ml coltsfoot, green tea and bearberry hot­water extracts. In addition, the effects of bearberry, green tea and coltsfoot hot­water extracts on α­glucosidase activity in vivo were evaluated according to the blood glucose levels (BGLs) in maltose and glucose load model rats. It was indicated that the administration of these three herb extracts significantly reduced the increasing BGLs after maltose loading until 0.5 h compared with the control group. However, only coltsfoot extract significantly reduced the increasing BGLs after glucose loading until 0.5 h compared with the control group. Thus, the present results may facilitate the understanding of a novel functionality in traditional herbs, which could be useful for the prevention of disease onset and progression, such as in hyperglycemia and type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inhibidores de Glicósido Hidrolasas/administración & dosificación , Plantas Medicinales/química , Agua/administración & dosificación , alfa-Glucosidasas/metabolismo , Animales , Arctostaphylos/química , Aspalathus/química , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Tipo 2/enzimología , Modelos Animales de Enfermedad , Glucosa/efectos adversos , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Calor , Masculino , Maltosa/efectos adversos , Olea/química , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ratas , Salix/química , Té/química , Tussilago/química , Agua/química , Agua/farmacología
2.
Artículo en Inglés | MEDLINE | ID: mdl-25945116

RESUMEN

Type 2 diabetes mellitus has been known to increase systemic oxidative stress by chronic hyperglycemia and visceral obesity and aggravate cerebral ischemic injury. On the basis of our previous study regarding a water-soluble extract from the culture medium of Ganoderma lucidum mycelia (designed as MAK), which exerts antioxidative and neuroprotective effects, the present study was conducted to evaluate the preventive effects of MAK on apoptosis and necroptosis (a programmed necrosis) induced by hypoxia/ischemia (H/I) in type 2 diabetic KKAy mice. H/I was induced by a combination of unilateral common carotid artery ligation with hypoxia (8% O2 for 20 min) and subsequent reoxygenation. Pretreatment with MAK (1 g/kg, p.o.) for a week significantly reduced H/I-induced neurological deficits and brain infarction volume assessed at 24 h of reoxygenation. Histochemical analysis showed that MAK significantly suppressed superoxide production, neuronal cell death, and vacuolation in the ischemic penumbra, which was accompanied by a decrease in the numbers of TUNEL- or cleaved caspase-3-positive cells. Furthermore, MAK decreased the expression of receptor-interacting protein kinase 3 mRNA and protein, a key molecule for necroptosis. These results suggest that MAK confers resistance to apoptotic and necroptotic cell death and relieves H/I-induced cerebral ischemic injury in type 2 diabetic mice.

3.
Nutrients ; 6(4): 1554-77, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24739976

RESUMEN

Diabetes mellitus is known to exacerbate cerebral ischemic injury. In the present study, we investigated antiapoptotic and anti-inflammatory effects of oral supplementation of ascorbic acid (AA) on cerebral injury caused by middle cerebral artery occlusion and reperfusion (MCAO/Re) in rats with streptozotocin-induced diabetes. We also evaluated the effects of AA on expression of sodium-dependent vitamin C transporter 2 (SVCT2) and glucose transporter 1 (GLUT1) after MCAO/Re in the brain. The diabetic state markedly aggravated MCAO/Re-induced cerebral damage, as assessed by infarct volume and edema. Pretreatment with AA (100 mg/kg, p.o.) for two weeks significantly suppressed the exacerbation of damage in the brain of diabetic rats. AA also suppressed the production of superoxide radical, activation of caspase-3, and expression of proinflammatory cytokines (tumor necrosis factor-α and interleukin-1ß) in the ischemic penumbra. Immunohistochemical staining revealed that expression of SVCT2 was upregulated primarily in neurons and capillary endothelial cells after MCAO/Re in the nondiabetic cortex, accompanied by an increase in total AA (AA + dehydroascorbic acid) in the tissue, and that these responses were suppressed in the diabetic rats. AA supplementation to the diabetic rats restored these responses to the levels of the nondiabetic rats. Furthermore, AA markedly upregulated the basal expression of GLUT1 in endothelial cells of nondiabetic and diabetic cortex, which did not affect total AA levels in the cortex. These results suggest that daily intake of AA attenuates the exacerbation of cerebral ischemic injury in a diabetic state, which may be attributed to anti-apoptotic and anti-inflammatory effects via the improvement of augmented oxidative stress in the brain. AA supplementation may protect endothelial function against the exacerbated ischemic oxidative injury in the diabetic state and improve AA transport through SVCT2 in the cortex.


Asunto(s)
Ácido Ascórbico/administración & dosificación , Diabetes Mellitus Experimental/tratamiento farmacológico , Transportador de Glucosa de Tipo 1/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Neuronas/efectos de los fármacos , Transportadores de Sodio Acoplados a la Vitamina C/metabolismo , Administración Oral , Animales , Apoptosis/efectos de los fármacos , Encéfalo/efectos de los fármacos , Caspasa 3 , Suplementos Dietéticos , Células Endoteliales/efectos de los fármacos , Transportador de Glucosa de Tipo 1/genética , Infarto de la Arteria Cerebral Media/patología , Interleucina-1beta/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transportadores de Sodio Acoplados a la Vitamina C/genética , Estreptozocina , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba
4.
BMC Complement Altern Med ; 13: 370, 2013 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-24369991

RESUMEN

BACKGROUND: Ganoderma lucidum is a popular medicinal mushroom used for promoting health and longevity in Asian countries. Previously, we reported that a water-soluble extract from a culture medium of Ganoderma lucidum mycelia (MAK) exerts antioxidative and cerebroprotective effects against ischemia-reperfusion injury in vivo. Here, we evaluated the antidepressant and anxiolytic activities of MAK in rats. METHODS: MAK (0.3 or 1 g/kg, p.o.) was administered in the experimental animals 60 min before the forced swimming, open-field, elevated plus-maze, contextual fear-conditioning, and head twitch tests. Additionally, the mechanisms involved in the antidepressant-like action of MAK were investigated by the serotonin precursor 5-hydroxy-L-tryptophan (5-HTP)- or 5-HT2A agonist (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI)-induced head twitch responses. RESULTS: Treatment with MAK (1 g/kg) exhibited antidepressant-like effects in the forced swimming test, attenuated freezing behavior in the contextual fear-conditioning test, and decreased the number of head twitches induced by DOI, but not with 5-HTP. No significant response was observed in locomotion or anxiety-like behavior, when the animals were evaluated in the open-field or elevated plus-maze test, respectively. CONCLUSIONS: These data suggest that MAK has antidepressant-like potential, which is most likely due to the antagonism of 5-HT2A receptors, and possesses anxiolytic-like effects toward memory-dependent and/or stress-induced anxiety in rats.


Asunto(s)
Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Extractos Vegetales/farmacología , Reishi/química , 5-Hidroxitriptófano/toxicidad , Análisis de Varianza , Animales , Antidepresivos/química , Antidepresivos/uso terapéutico , Medios de Cultivo Condicionados , Miedo/efectos de los fármacos , Masculino , Micelio/metabolismo , Extractos Vegetales/química , Ratas , Ratas Sprague-Dawley , Reishi/metabolismo , Estrés Fisiológico , Estrés Psicológico , Tics/inducido químicamente , Tics/tratamiento farmacológico , Tics/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA