Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Opin Neurobiol ; 77: 102627, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36115252

RESUMEN

Investigating links between nervous system function and behavior requires monitoring neuronal activity at a range of spatial and temporal scales. Here, we summarize recent progress in applying two distinct but complementary approaches to the study of network dynamics in the neocortex. Mesoscopic calcium imaging allows simultaneous monitoring of activity across most of the cortex at moderate spatiotemporal resolution. Electrophysiological recordings provide extremely high temporal resolution of neural signals at multiple targeted locations. A number of recent studies have used these tools to reveal novel patterns of activity across distributed cortical subnetworks. This growing body of work strongly supports the hypothesis that the dynamic coordination of spatially distinct regions is a fundamental aspect of cortical function that supports cognition and behavior.


Asunto(s)
Neocórtex , Neocórtex/fisiología , Neuronas/fisiología , Cognición , Fenómenos Electrofisiológicos , Calcio
2.
Nat Methods ; 17(12): 1262-1271, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33139894

RESUMEN

Achieving a comprehensive understanding of brain function requires multiple imaging modalities with complementary strengths. We present an approach for concurrent widefield optical and functional magnetic resonance imaging. By merging these modalities, we can simultaneously acquire whole-brain blood-oxygen-level-dependent (BOLD) and whole-cortex calcium-sensitive fluorescent measures of brain activity. In a transgenic murine model, we show that calcium predicts the BOLD signal, using a model that optimizes a gamma-variant transfer function. We find consistent predictions across the cortex, which are best at low frequency (0.009-0.08 Hz). Furthermore, we show that the relationship between modality connectivity strengths varies by region. Our approach links cell-type-specific optical measurements of activity to the most widely used method for assessing human brain function.


Asunto(s)
Mapeo Encefálico/métodos , Proteínas de Unión al Calcio/metabolismo , Corteza Cerebral/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Animales , Análisis de los Gases de la Sangre , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Fluorescencia , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Transgénicos , Oxígeno/análisis
3.
J Neurophysiol ; 93(4): 2194-232, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15525801

RESUMEN

To better understand population phenomena in thalamocortical neuronal ensembles, we have constructed a preliminary network model with 3,560 multicompartment neurons (containing soma, branching dendrites, and a portion of axon). Types of neurons included superficial pyramids (with regular spiking [RS] and fast rhythmic bursting [FRB] firing behaviors); RS spiny stellates; fast spiking (FS) interneurons, with basket-type and axoaxonic types of connectivity, and located in superficial and deep cortical layers; low threshold spiking (LTS) interneurons, which contacted principal cell dendrites; deep pyramids, which could have RS or intrinsic bursting (IB) firing behaviors, and endowed either with nontufted apical dendrites or with long tufted apical dendrites; thalamocortical relay (TCR) cells; and nucleus reticularis (nRT) cells. To the extent possible, both electrophysiology and synaptic connectivity were based on published data, although many arbitrary choices were necessary. In addition to synaptic connectivity (by AMPA/kainate, NMDA, and GABA(A) receptors), we also included electrical coupling between dendrites of interneurons, nRT cells, and TCR cells, and--in various combinations--electrical coupling between the proximal axons of certain cortical principal neurons. Our network model replicates several observed population phenomena, including 1) persistent gamma oscillations; 2) thalamocortical sleep spindles; 3) series of synchronized population bursts, resembling electrographic seizures; 4) isolated double population bursts with superimposed very fast oscillations (>100 Hz, "VFO"); 5) spike-wave, polyspike-wave, and fast runs (about 10 Hz). We show that epileptiform bursts, including double and multiple bursts, containing VFO occur in rat auditory cortex in vitro, in the presence of kainate, when both GABA(A) and GABA(B) receptors are blocked. Electrical coupling between axons appears necessary (as reported previously) for persistent gamma and additionally plays a role in the detailed shaping of epileptogenic events. The degree of recurrent synaptic excitation between spiny stellate cells, and their tendency to fire throughout multiple bursts, also appears critical in shaping epileptogenic events.


Asunto(s)
Relojes Biológicos/fisiología , Corteza Cerebral/fisiología , Epilepsia/fisiopatología , Modelos Neurológicos , Red Nerviosa , Sueño/fisiología , Tálamo/fisiología , Potenciales de Acción/fisiología , Animales , Masculino , Ratas , Ratas Sprague-Dawley , Ratas Wistar
4.
J Neurosci ; 23(32): 10190-200, 2003 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-14614077

RESUMEN

To study integration of converging sensory inputs on single cortical neurons, we performed intracellular recordings in vivo in the barrel cortex of the barbiturate-anesthetized rat. We deflected the principal whisker (PW) for each cell either alone or preceded (at 20, 50, and 100 msec) by the deflection of a small number of remote whiskers (RWs) far from the PW. The synaptic responses to both the PW and the RW were similar qualitatively and consisted of excitation followed by inhibition that comprised an early and a late component. The RW response was of smaller amplitude and more often subthreshold for action potential generation. The main effect of the RW deflection was a suppression of the subsequent response to the PW that was most pronounced at the 20 msec interval and decreased progressively at the 50 and 100 msec intervals. Suppression of the spike output of the cell was not caused by hyperpolarization (subtractive inhibition) but by a reduction in the EPSP amplitude (divisive inhibition), resulting in a highly sublinear summation of the two responses. The small decrease in input resistance caused by the RW responses is not consistent with synaptic shunting as the main cause of the reduction of the EPSP amplitude. Instead, our results suggest that suppression results from a decrease in the amount of synaptic input triggered by the PW, particularly the early excitation. We suggest that this process involves a reduction in reverberant granular cell excitation that is induced by PW deflection.


Asunto(s)
Neuronas Aferentes/fisiología , Corteza Somatosensorial/fisiología , Potenciales de Acción/fisiología , Animales , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Estimulación Física , Ratas , Ratas Sprague-Dawley , Corteza Somatosensorial/citología , Tálamo/fisiología , Vibrisas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA