Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 28(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37375312

RESUMEN

The synthesis of reliable biological nanomaterials is a crucial area of study in nanotechnology. In this study, Emericella dentata was employed for the biosynthesis of AgNPs, which were then combined with synthesized biochar, a porous structure created through biomass pyrolysis. The synergistic effects of AgNPs and biochar were evaluated through the assessment of pro-inflammatory cytokines, anti-apoptotic gene expression, and antibacterial activity. Solid biosynthesized AgNPs were evaluated by XRD and SEM, with SEM images revealing that most of the AgNPs ranged from 10 to 80 nm, with over 70% being less than 40 nm. FTIR analysis indicated the presence of stabilizing and reducing functional groups in the AgNPs. The nanoemulsion's zeta potential, hydrodynamic diameter, and particle distribution index were found to be -19.6 mV, 37.62 nm, and 0.231, respectively. Biochar, on the other hand, did not have any antibacterial effects on the tested bacterial species. However, when combined with AgNPs, its antibacterial efficacy against all bacterial species was significantly enhanced. Furthermore, the combined material significantly reduced the expression of anti-apoptotic genes and pro-inflammatory cytokines compared to individual treatments. This study suggests that low-dose AgNPs coupled with biochar could be a more effective method to combat lung cancer epithelial cells and pathogenic bacteria compared to either substance alone.


Asunto(s)
Neoplasias Pulmonares , Nanopartículas del Metal , Humanos , Pruebas de Sensibilidad Microbiana , Nanopartículas del Metal/química , Bacterias , Citocinas/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Neoplasias Pulmonares/tratamiento farmacológico , Extractos Vegetales/química
2.
Z Naturforsch C J Biosci ; 78(3-4): 105-112, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35599246

RESUMEN

Aromatic plants embrace volatile compounds with efficiency in treating different diseases. In Jordan, Syzygium aromaticum flower buds (clove) are extensively used as folk medicine without awareness of its bio-safe dosage. Herein, clove buds were hydrodistilled using the Clevenger apparatus, and the resulting essential oil (CEO) was analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). The antibacterial activity was evaluated against tested bacterial strains by agar diffusion test and micro-broth dilution assay. The antioxidant capacity was assessed using DPPH radical scavenging assay, while the cytotoxic potency was unraveled by determination of its anti-proliferative activity against MDA-MB-231 breast adenocarcinoma and normal Vero cell lines. CEO yield was 5.7 ± 1.3% (w/w); encompassed 24 volatile ingredients with eugenol as the principal compound (73.41%). The CEO inhibited the growth of both Gram-positive and Gram-negative bacterial test strains, causing the formation of 13.7 ± 1.5-17.3 ± 0.6 mm and 11.7 ± 1.5-20.7 ± 1.2 mm inhibition zones, respectively with MIC 1.25-5 µL/mL. Moreover, it showed antioxidant activity with IC50 0.0016 ± 0.0001 µL/mL (1.6 ± 0.1 µg/mL, 2.98 ± 0.4 µg Trolox®/µg CEO). Intriguingly, the CEO was cytotoxic against both cancerous and noncancerous cell lines at IC50 of 0.25 ± 0.02 µL/mL and 0.18 ± 0.01 µL/mL, respectively. Herein results unveil the potential application of CEO as a pharmaceutical remedy with considering its bio-safe dosage.


Asunto(s)
Antineoplásicos , Aceites Volátiles , Syzygium , Aceites Volátiles/farmacología , Aceites Volátiles/química , Syzygium/química , Antioxidantes/farmacología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
3.
Pharmaceutics ; 14(5)2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35631691

RESUMEN

The rapid development of nanotechnology and its applications in medicine has provided the perfect solution against a wide range of different microbes, especially antibiotic-resistant ones. In this study, a one-step approach was used in preparing silver nanoparticles (AgNPs) by mixing silver nitrate with hot Hypericum perforatum (St. John's wort) aqueous extract under high stirring to prevent agglomeration. The formation of silver nanoparticles was monitored by continuous measurement of the surface plasma resonance spectra (UV-VIS). The effect of St. John's wort aqueous extract on the formation of silver nanoparticles was evaluated and fully characterized by using different physicochemical techniques. The obtained silver nanoparticles were spherical, monodisperse, face-centered cubic (fcc) crystal structures, and the size ranges between 20 to 40 nm. They were covered with a capping layer of organic compounds considered as a nano dimension protective layer that prevents agglomeration and sedimentation. AgNPs revealed antibacterial activity against both tested Gram-positive and Gram-negative bacterial strains causing the formation of 13-32 mm inhibition zones with MIC 6.25-12.5 µg/mL; Escherichia coli strains were resistant to tested AgNPs. The specific growth rate of S. aureus was significantly reduced due to tested AgNPs at concentrations ≥½ MIC. AgNPs did not affect wound migration in fibroblast cell lines compared to control. Our results highlighted the potential use of AgNPs capped with plant extracts in the pharmaceutical and food industries to control bacterial pathogens' growth; however, further studies are required to confirm their wound healing capability and their health impact must be critically evaluated.

4.
Phytochemistry ; 168: 112110, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31494345

RESUMEN

Based on the occurrence of indole alkaloids in so-called "chloroform leaf surface extracts", it was previously deduced that these alkaloids are present in the cuticle at the leaf surface of Catharanthus roseus and Vinca minor. As no symplastic markers were found in these extracts this deduction seemed to be sound. However, since chloroform is known to destroy biomembranes very rapidly, these data have to be judged with scepticism. We reanalyzed the alleged apoplastic localization of indole alkaloids by employing slightly acidic aqueous surface extracts and comparing the corresponding alkaloid patterns with those of aqueous total leaf extracts. Whereas in the "chloroform leaf surface extracts" all alkaloids are present in the same manner as in the total leaf extracts, no alkaloids occur in the aqueous leaf surface extracts. These results clearly show that chloroform had rapidly destroyed cell integrity, and the related extracts also contain the alkaloids genuinely accumulated within the protoplasm. The related decompartmentation was verified by the massively enhanced concentration of amino acids in aqueous surface extracts of chloroform treated leaves. Furthermore, the chloroform-induced cell disintegration was vividly visualized by confocal laser scanning microscopical analyses, which clearly displayed a strong decrease in the chlorophyll fluorescence in chloroform treated leaves. These findings unequivocally display that the indole alkaloids are not located in the apoplastic space, but exclusively are present symplastically within the cells of V. minor and C. roseus leaves. Accordingly, we have to presume that also other leaf surface extracts employing organic solvents have to be re-investigated.


Asunto(s)
Catharanthus/química , Alcaloides Indólicos/análisis , Alcaloides Indólicos/aislamiento & purificación , Extractos Vegetales/análisis , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/citología , Vinca/química , Catharanthus/citología , Alcaloides Indólicos/química , Extractos Vegetales/química , Hojas de la Planta/química , Vinca/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA