Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Haematologica ; 108(1): 135-149, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35796011

RESUMEN

Anemia is a major health issue and associated with increased morbidity. Iron deficiency anemia (IDA) is the most prevalent, followed by anemia of chronic disease (ACD). IDA and ACD often co-exist, challenging diagnosis and treatment. While iron supplementation is the first-line therapy for IDA, its optimal route of administration and the efficacy of different repletion strategies in ACD are elusive. Female Lewis rats were injected with group A streptococcal peptidoglycan-polysaccharide (PG-APS) to induce inflammatory arthritis with associated ACD and/or repeatedly phlebotomized and fed with a low iron diet to induce IDA, or a combination thereof (ACD/IDA). Iron was either supplemented by daily oral gavage of ferric maltol or by weekly intravenous (i.v.) injection of ferric carboxymaltose for up to 4 weeks. While both strategies reversed IDA, they remained ineffective to improve hemoglobin (Hb) levels in ACD, although oral iron showed slight amelioration of various erythropoiesis-associated parameters. In contrast, both iron treatments significantly increased Hb in ACD/IDA. In ACD and ACD/IDA animals, i.v. iron administration resulted in iron trapping in liver and splenic macrophages, induction of ferritin expression and increased circulating levels of the iron hormone hepcidin and the inflammatory cytokine interleukin-6, while oral iron supplementation reduced interleukin-6 levels. Thus, oral and i.v. iron resulted in divergent effects on systemic and tissue iron homeostasis and inflammation. Our results indicate that both iron supplements improve Hb in ACD/IDA, but are ineffective in ACD with pronounced inflammation, and that under the latter condition, i.v. iron is trapped in macrophages and may enhance inflammation.


Asunto(s)
Anemia Ferropénica , Anemia , Femenino , Animales , Ratas , Interleucina-6 , Ratas Endogámicas Lew , Anemia/diagnóstico , Hierro/metabolismo , Anemia Ferropénica/tratamiento farmacológico , Anemia Ferropénica/etiología , Anemia Ferropénica/diagnóstico , Inflamación/tratamiento farmacológico
2.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36361875

RESUMEN

The sequestration of iron in case of infection, termed nutritional immunity, is an established strategy of host defense. However, the interaction between pathogens and the mammalian iron storage protein ferritin is hitherto not completely understood. To better characterize the function of ferritin in Gram-negative infections, we incubated iron-starved cultures of Salmonella Typhimurium and knockout mutant strains defective for major iron uptake pathways or Escherichia coli with horse spleen ferritin or ionic iron as the sole iron source. Additionally, we added bovine superoxide dismutase and protease inhibitors to the growth medium to assess the effect of superoxide and bacterial proteases, respectively, on Salmonella proliferation and reductive iron release. Compared to free ionic iron, ferritin-bound iron was less available to Salmonella, but was still sufficient to significantly enhance the growth of the bacteria. In the absence of various iron acquisition genes, the availability of ferritin iron further decreased. Supplementation with superoxide dismutase significantly reduced the growth of the ΔentC knockout strain with holoferritin as the sole iron source in comparison with ionic ferrous iron. In contrast, this difference was not observed in the wildtype strain, suggesting that superoxide dismutase undermines bacterial iron uptake from ferritin by siderophore-independent mechanisms. Ferritin seems to diminish iron availability for bacteria in comparison to ionic iron, and its iron sequestering effect could possibly be enhanced by host superoxide dismutase activity.


Asunto(s)
Ferritinas , Hierro , Bovinos , Animales , Caballos , Ferritinas/metabolismo , Hierro/metabolismo , Enterobacteriaceae , Salmonella typhimurium , Superóxido Dismutasa/metabolismo , Escherichia coli/metabolismo , Mamíferos/metabolismo
3.
Gastroenterology ; 162(6): 1690-1704, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35031299

RESUMEN

BACKGROUND & AIMS: Crohn's disease (CD) globally emerges with Westernization of lifestyle and nutritional habits. However, a specific dietary constituent that comprehensively evokes gut inflammation in human inflammatory bowel diseases remains elusive. We aimed to delineate how increased intake of polyunsaturated fatty acids (PUFAs) in a Western diet, known to impart risk for developing CD, affects gut inflammation and disease course. We hypothesized that the unfolded protein response and antioxidative activity of glutathione peroxidase 4 (GPX4), which are compromised in human CD epithelium, compensates for metabolic perturbation evoked by dietary PUFAs. METHODS: We phenotyped and mechanistically dissected enteritis evoked by a PUFA-enriched Western diet in 2 mouse models exhibiting endoplasmic reticulum (ER) stress consequent to intestinal epithelial cell (IEC)-specific deletion of X-box binding protein 1 (Xbp1) or Gpx4. We translated the findings to human CD epithelial organoids and correlated PUFA intake, as estimated by a dietary questionnaire or stool metabolomics, with clinical disease course in 2 independent CD cohorts. RESULTS: PUFA excess in a Western diet potently induced ER stress, driving enteritis in Xbp1-/-IEC and Gpx4+/-IEC mice. ω-3 and ω-6 PUFAs activated the epithelial endoplasmic reticulum sensor inositol-requiring enzyme 1α (IRE1α) by toll-like receptor 2 (TLR2) sensing of oxidation-specific epitopes. TLR2-controlled IRE1α activity governed PUFA-induced chemokine production and enteritis. In active human CD, ω-3 and ω-6 PUFAs instigated epithelial chemokine expression, and patients displayed a compatible inflammatory stress signature in the serum. Estimated PUFA intake correlated with clinical and biochemical disease activity in a cohort of 160 CD patients, which was similarly demonstrable in an independent metabolomic stool analysis from 199 CD patients. CONCLUSIONS: We provide evidence for the concept of PUFA-induced metabolic gut inflammation which may worsen the course of human CD. Our findings provide a basis for targeted nutritional therapy.


Asunto(s)
Enfermedad de Crohn , Enteritis , Ácidos Grasos Omega-3 , Animales , Enfermedad de Crohn/tratamiento farmacológico , Endorribonucleasas , Enteritis/inducido químicamente , Enteritis/tratamiento farmacológico , Ácidos Grasos Insaturados , Humanos , Inflamación/tratamiento farmacológico , Ratones , Proteínas Serina-Treonina Quinasas , Receptor Toll-Like 2
4.
EBioMedicine ; 71: 103568, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34488018

RESUMEN

BACKGROUND: Iron deficiency anaemia (IDA) is a major health concern. However, preventive iron supplementation in regions with high burden of infectious diseases resulted in an increase of infection related morbidity and mortality. METHODS: We fed male C57BL/6N mice with either an iron deficient or an iron adequate diet. Next, they received oral iron supplementation or placebo followed by intraperitoneal infection with Salmonella Typhimurium (S.Tm). FINDINGS: We found that mice with IDA had a poorer clinical outcome than mice on an iron adequate diet. Interestingly, iron supplementation of IDA mice resulted in higher bacterial burden in organs and shortened survival. Increased transferrin saturation and non-transferrin bound iron in the circulation together with low expression of ferroportin facilitated the access of the pathogen to iron and promoted bacterial growth. Anaemia, independent of iron supplementation, was correlated with reduced neutrophil counts and cytotoxic T cells. With iron supplementation, anaemia additionally correlated with increased splenic levels of the cytokine IL-10, which is suggestive for a weakened immune control to S.Tm infection. INTERPRETATION: Supplementing iron to anaemic mice worsens the clinical course of bacterial infection. This can be traced back to increased iron delivery to bacteria along with an impaired anti-microbial immune response. Our findings may have important implications for iron supplementation strategies in areas with high endemic burden of infections, putting those individuals, who potentially profit most from iron supplementation for anaemia, at the highest risk for infections. FUNDING: Financial support by the Christian Doppler Laboratory for Iron Metabolism and Anemia Research.


Asunto(s)
Anemia Ferropénica/tratamiento farmacológico , Bacteriemia/complicaciones , Hierro/sangre , Infecciones por Salmonella/complicaciones , Anemia Ferropénica/sangre , Anemia Ferropénica/complicaciones , Animales , Bacteriemia/sangre , Bacteriemia/patología , Carga Bacteriana , Hierro/administración & dosificación , Hierro/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Infecciones por Salmonella/sangre , Infecciones por Salmonella/patología
5.
JCI Insight ; 6(13)2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34236052

RESUMEN

Iron is an essential nutrient for mammals as well as for pathogens. Inflammation-driven changes in systemic and cellular iron homeostasis are central for host-mediated antimicrobial strategies. Here, we studied the role of the iron storage protein ferritin H (FTH) for the control of infections with the intracellular pathogen Salmonella enterica serovar Typhimurium by macrophages. Mice lacking FTH in the myeloid lineage (LysM-Cre+/+Fthfl/fl mice) displayed impaired iron storage capacities in the tissue leukocyte compartment, increased levels of labile iron in macrophages, and an accelerated macrophage-mediated iron turnover. While under steady-state conditions, LysM-Cre+/+Fth+/+ and LysM-Cre+/+Fthfl/fl animals showed comparable susceptibility to Salmonella infection, i.v. iron supplementation drastically shortened survival of LysM-Cre+/+Fthfl/fl mice. Mechanistically, these animals displayed increased bacterial burden, which contributed to uncontrolled triggering of NF-κB and inflammasome signaling and development of cytokine storm and death. Importantly, pharmacologic inhibition of the inflammasome and IL-1ß pathways reduced cytokine levels and mortality and partly restored infection control in iron-treated ferritin-deficient mice. These findings uncover incompletely characterized roles of ferritin and cellular iron turnover in myeloid cells in controlling bacterial spread and for modulating NF-κB and inflammasome-mediated cytokine activation, which may be of vital importance in iron-overloaded individuals suffering from severe infections and sepsis.


Asunto(s)
Apoferritinas , Susceptibilidad a Enfermedades/metabolismo , Inflamación , Hierro , Macrófagos , Infecciones por Salmonella , Salmonella typhimurium/inmunología , Animales , Apoferritinas/deficiencia , Apoferritinas/metabolismo , Inmunidad Innata , Inflamasomas/metabolismo , Inflamación/metabolismo , Inflamación/microbiología , Interleucina-1beta/inmunología , Hierro/inmunología , Hierro/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/metabolismo , Transducción de Señal/inmunología
6.
Blood ; 136(9): 1080-1090, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32438400

RESUMEN

Recombinant erythropoietin (EPO) and iron substitution are a standard of care for treatment of anemias associated with chronic inflammation, including anemia of chronic kidney disease. A black box warning for EPO therapy and concerns about negative side effects related to high-dose iron supplementation as well as the significant proportion of patients becoming EPO resistant over time explains the medical need to define novel strategies to ameliorate anemia of chronic disease (ACD). As hepcidin is central to the iron-restrictive phenotype in ACD, therapeutic approaches targeting hepcidin were recently developed. We herein report the therapeutic effects of a fully human anti-BMP6 antibody (KY1070) either as monotherapy or in combination with Darbepoetin alfa on iron metabolism and anemia resolution in 2 different, well-established, and clinically relevant rodent models of ACD. In addition to counteracting hepcidin-driven iron limitation for erythropoiesis, we found that the combination of KY1070 and recombinant human EPO improved the erythroid response compared with either monotherapy in a qualitative and quantitative manner. Consequently, the combination of KY1070 and Darbepoetin alfa resulted in an EPO-sparing effect. Moreover, we found that suppression of hepcidin via KY1070 modulates ferroportin expression on erythroid precursor cells, thereby lowering potentially toxic-free intracellular iron levels and by accelerating erythroid output as reflected by increased maturation of erythrocyte progenitors. In summary, we conclude that treatment of ACD, as a highly complex disease, becomes more effective by a multifactorial therapeutic approach upon mobilization of endogenous iron deposits and stimulation of erythropoiesis.


Asunto(s)
Anemia/terapia , Anticuerpos Monoclonales/uso terapéutico , Proteína Morfogenética Ósea 6/antagonistas & inhibidores , Darbepoetina alfa/uso terapéutico , Anemia/tratamiento farmacológico , Anemia/etiología , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/inmunología , Artritis/inducido químicamente , Artritis/complicaciones , Médula Ósea/metabolismo , Proteína Morfogenética Ósea 6/inmunología , Proteínas de Transporte de Catión/metabolismo , Citocinas/sangre , Darbepoetina alfa/administración & dosificación , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Eritropoyetina/farmacología , Eritropoyetina/uso terapéutico , Células Hep G2 , Humanos , Hierro/metabolismo , Ratones , Proteínas Musculares/sangre , Polisacáridos Bacterianos/toxicidad , Distribución Aleatoria , Proteínas Recombinantes/inmunología , Insuficiencia Renal Crónica/complicaciones
7.
Nat Commun ; 11(1): 1775, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286299

RESUMEN

The increased incidence of inflammatory bowel disease (IBD) has become a global phenomenon that could be related to adoption of a Western life-style. Westernization of dietary habits is partly characterized by enrichment with the ω-6 polyunsaturated fatty acid (PUFA) arachidonic acid (AA), which entails risk for developing IBD. Glutathione peroxidase 4 (GPX4) protects against lipid peroxidation (LPO) and cell death termed ferroptosis. We report that small intestinal epithelial cells (IECs) in Crohn's disease (CD) exhibit impaired GPX4 activity and signs of LPO. PUFAs and specifically AA trigger a cytokine response of IECs which is restricted by GPX4. While GPX4 does not control AA metabolism, cytokine production is governed by similar mechanisms as ferroptosis. A PUFA-enriched Western diet triggers focal granuloma-like neutrophilic enteritis in mice that lack one allele of Gpx4 in IECs. Our study identifies dietary PUFAs as a trigger of GPX4-restricted mucosal inflammation phenocopying aspects of human CD.


Asunto(s)
Enfermedad de Crohn/metabolismo , Grasas de la Dieta/efectos adversos , Enteritis/metabolismo , Ácidos Grasos Insaturados/metabolismo , Inflamación/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Adulto , Animales , Muerte Celular/genética , Muerte Celular/fisiología , Enfermedad de Crohn/genética , Enteritis/etiología , Enteritis/genética , Ácidos Grasos Insaturados/genética , Femenino , Glutatión Peroxidasa/metabolismo , Humanos , Inflamación/genética , Peroxidación de Lípido/genética , Peroxidación de Lípido/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética
8.
Microb Cell ; 6(12): 531-543, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31832425

RESUMEN

Iron is an essential nutrient for immune cells and microbes, therefore the control of its homeostasis plays a decisive role for infections. Moreover, iron affects metabolic pathways by modulating the translational expression of the key tricarboxylic acid cycle (TCA) enzyme mitochondrial aconitase and the energy formation by mitochondria. Recent data provide evidence for metabolic re-programming of immune cells including macrophages during infection which is centrally controlled by mTOR. We herein studied the effects of iron perturbations on metabolic profiles in macrophages upon infection with the intracellular bacterium Salmonella enterica serovar Typhimurium and analysed for a link to the mTOR pathway. Infection of the murine macrophage cell line RAW264.7 with Salmonella resulted in the induction of mTOR activity, anaerobic glycolysis and inhibition of the TCA activity as reflected by reduced pyruvate and increased lactate levels. In contrast, iron supplementation to macrophages not only affected the mRNA expression of TCA and glycolytic enzymes but also resulted in metabolic reprogramming with increased pyruvate accumulation and reduced lactate levels apart from modulating the concentrations of several other metabolites. While mTOR slightly affected cellular iron homeostasis in infected macrophages, mTOR inhibition by rapamycin resulted in a significant growth promotion of bacteria. Importantly, iron further increased bacterial numbers in rapamycin treated macrophages, however, the metabolic profiles induced by iron in the presence or absence of mTOR activity differed in several aspects. Our data indicate, that iron not only serves as a bacterial nutrient but also acts as a metabolic modulator of the TCA cycle, partly reversing the Warburg effect and resulting in a pathogen friendly nutritional environment.

9.
Nutrients ; 9(10)2017 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-28984832

RESUMEN

The beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs) on cardiovascular disease have been studied extensively. However, it remains unclear to what extent n-3 PUFAs may impact Reverse Cholesterol Transport (RCT). RCT describes a mechanism by which excess cholesterol from peripheral tissues is transported to the liver for hepatobiliary excretion, thereby inhibiting foam cell formation and the development of atherosclerosis. The aim of this review is to summarize the literature and to provide an updated overview of the effects of n-3 PUFAs on key players in RCT, including apoliprotein AI (apoA-I), ATP-binding cassette transporter A1 (ABCA1), ABCG1, apoE, scavenger receptor class B type I (SR-BI), cholesteryl ester transfer protein (CETP), low-density lipoprotein receptor (LDLr), cholesterol 7 alpha-hydroxylase (CYP7A1) and ABCG5/G8. Based on current knowledge, we conclude that n-3 PUFAs may beneficially affect RCT, mainly by influencing high-density lipoprotein (HDL) remodeling and by promoting hepatobiliary sterol excretion.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Colesterol/metabolismo , Ácidos Grasos Omega-3/administración & dosificación , Células Espumosas/efectos de los fármacos , Eliminación Hepatobiliar/efectos de los fármacos , Hígado/efectos de los fármacos , Animales , Transporte Biológico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/metabolismo , Células Espumosas/metabolismo , Humanos , Hígado/metabolismo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA