Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38352554

RESUMEN

It is well established that Staphylococcus aureus can incorporate exogenous straight-chain unsaturated fatty acids (SCUFAs) into membrane phospho- and glyco-lipids from various sources in supplemented culture media, and when growing in vivo in an infection. Given the enhancement of membrane fluidity when oleic acid (C18:1Δ9) is incorporated into lipids, we were prompted to examine the effect of medium supplementation with C18:1Δ9 on growth at low temperatures. C18:1Δ9 supported the growth of a cold-sensitive, branched-chain fatty acid (BCFA)-deficient mutant at 12°C. Interestingly, we found similar results in the BCFA-sufficient parental strain. We show that incorporation of C18:1Δ9 and its elongation product C20:1Δ9 into membrane lipids was required for growth stimulation and relied on a functional FakAB incorporation system. Lipidomics analysis of the phosphatidylglycerol (PG) and diglycosyldiacylglycerol (DGDG) lipid classes revealed major impacts of C18:1Δ9 and temperature on lipid species. Growth at 12°C in the presence of C18:1Δ9 also led to increased production of the carotenoid pigment staphyloxanthin; however, this was not an obligatory requirement for cold adaptation. Enhancement of growth by C18:1Δ9 is an example of homeoviscous adaptation to low temperatures utilizing an exogenous fatty acid. This may be significant in the growth of S. aureus at low temperatures in foods that commonly contain C18:1Δ9 and other SCUFAs in various forms.

2.
Sci Rep ; 8(1): 1286, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29352199

RESUMEN

Smith-Lemli-Opitz Syndrome (SLOS) is a recessive human disease caused by defective cholesterol (CHOL) synthesis at the level of DHCR7 (7-dehydrocholesterol reductase), which normally catalyzes the conversion of 7-dehydrocholesterol (7DHC) to CHOL. Formation and abnormal accumulation of 7DHC and 7DHC-derived oxysterols occur in SLOS patients and in rats treated with the DHCR7 inhibitor AY9944. The rat SLOS model exhibits progressive and irreversible retinal dysfunction and degeneration, which is only partially ameliorated by dietary CHOL supplementation. We hypothesized that 7DHC-derived oxysterols are causally involved in this retinal degeneration, and that blocking or reducing their formation should minimize the phenotype. Here, using the SLOS rat model, we demonstrate that combined dietary supplementation with CHOL plus antioxidants (vitamins E and C, plus sodium selenite) provides better outcomes than dietary CHOL supplementation alone with regard to preservation of retinal structure and function and lowering 7DHC-derived oxysterol formation. These proof-of-principle findings provide a translational, pre-clinical framework for designing clinical trials using CHOL-antioxidant combination therapy as an improved therapeutic intervention over the current standard of care for the treatment of SLOS.


Asunto(s)
Colesterol/uso terapéutico , Degeneración Retiniana/prevención & control , Síndrome de Smith-Lemli-Opitz/prevención & control , Animales , Antioxidantes/administración & dosificación , Antioxidantes/uso terapéutico , Colesterol/administración & dosificación , Suplementos Dietéticos , Femenino , Ratas , Ratas Sprague-Dawley , Retina/metabolismo , Degeneración Retiniana/tratamiento farmacológico , Ácido Selenioso/administración & dosificación , Ácido Selenioso/uso terapéutico , Síndrome de Smith-Lemli-Opitz/tratamiento farmacológico , Vitaminas/administración & dosificación , Vitaminas/uso terapéutico
3.
Anal Chem ; 89(17): 9023-9030, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28764324

RESUMEN

Ion mobility-mass spectrometry (IM-MS) can provide orthogonal information, i.e., m/z and collision cross section (CCS), for the identification of drugs and drug metabolites. However, only a small number of CCS values are available for drugs, which limits the use of CCS as an identification parameter and the assessment of structure-function relationships of drugs using IM-MS. Here, we report the development of a rapid workflow for the measurement of CCS values of a large number of drug or drug-like molecules in nitrogen on the widely available traveling wave IM-MS (TWIM-MS) platform. Using a combination of small molecule and polypeptide CCS calibrants, we successfully determined the nitrogen CCS values of 1425 drug or drug-like molecules in the MicroSource Discovery Systems' Spectrum Collection using flow injection analysis of 384-well plates. Software was developed to streamline data extraction, processing, and calibration. We found that the overall drug collection covers a wide CCS range for the same mass, suggesting a large structural diversity of these drugs. However, individual drug classes appear to occupy a narrow and unique space in the CCS-mass 2D spectrum, suggesting a tight structure-function relationship for each class of drugs with a specific target. We observed bimodal distributions for several antibiotic species due to multiple protomers, including the known fluoroquinolone protomers and the new finding of cephalosporin protomers. Lastly, we demonstrated the utility of the high-throughput method and drug CCS database by quickly and confidently confirming the active component in a pharmaceutical product.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Espectrometría de Movilidad Iónica/métodos , Espectrometría de Masas/métodos , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA