Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biosci Bioeng ; 137(3): 187-194, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38281859

RESUMEN

Overexpression of proteins by introducing a DNA vector is among the most important tools for the metabolic engineering of microorganisms such as Escherichia coli. Protein overexpression imposes a burden on metabolism because metabolic pathways must supply building blocks for protein and DNA synthesis. Different E. coli strains have distinct metabolic capacities. In this study, two proteins were overexpressed in four E. coli strains (MG1655(DE3), W3110(DE3), BL21star(DE3), and Rosetta(DE3)), and their effects on metabolic burden were investigated. Metabolomic analysis showed that E. coli strains overexpressing green fluorescent protein had decreased levels of several metabolites, with a positive correlation between the number of reduced metabolites and green fluorescent protein expression levels. Moreover, nucleic acid-related metabolites decreased, indicating a metabolic burden in the E. coli strains, and the growth rate and protein expression levels were improved by supplementation with the five nucleosides. In contrast, two strains overexpressing delta rhodopsin, a microbial membrane rhodopsin from Haloterrigena turkmenica, led to a metabolic burden and decrease in the amino acids Ala, Val, Leu, Ile, Thr, Phe, Asp, and Trp, which are the most frequent amino acids in the delta rhodopsin protein sequence. The metabolic burden caused by protein overexpression was influenced by the metabolic capacity of the host strains and the sequences of the overexpressed proteins. Detailed characterization of the effects of protein expression on the metabolic state of engineered cells using metabolomics will provide insights into improving the production of target compounds.


Asunto(s)
Escherichia coli , Rodopsina , Proteínas Fluorescentes Verdes/genética , Escherichia coli/genética , Metaboloma , Aminoácidos , ADN
2.
Metab Eng ; 72: 227-236, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35346842

RESUMEN

In microbial fermentative production, ATP regeneration, while crucial for cellular processes, conflicts with efficient target chemical production because ATP regeneration exhausts essential carbon sources also required for target chemical biosynthesis. To wrestle with this dilemma, we harnessed the power of microbial rhodopsins with light-driven proton pumping activity to supplement with ATP, thereby facilitating the bioproduction of various chemicals. We first demonstrated a photo-driven ATP supply and redistribution of metabolic carbon flows to target chemical synthesis by installing already-known delta rhodopsin (dR) in Escherichia coli. In addition, we identified novel rhodopsins with higher proton pumping activities than dR, and created an engineered cell for in vivo self-supply of the rhodopsin-activator, all-trans-retinal. Our concept exploiting the light-powering ATP supplier offers a potential increase in carbon use efficiency for microbial productions through metabolic reprogramming.


Asunto(s)
Bombas de Protones , Rodopsina , Adenosina Trifosfato/genética , Carbono/metabolismo , Luz , Optogenética , Bombas de Protones/química , Bombas de Protones/genética , Bombas de Protones/metabolismo , Protones , Rodopsina/química , Rodopsina/genética , Rodopsina/metabolismo , Rodopsinas Microbianas/genética
3.
J Appl Microbiol ; 132(3): 2034-2041, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34689386

RESUMEN

AIM: The effects of detergent, ethanol and ethanol with plant meadowfoam oil on the growth of the red heterobasidomycete Xanthophyllomyces dendrorhous and on the production of astaxanthin (3,3'-dihydroxy-ß,ß-carotene-4,4'-dione) and fatty acids in this red yeast were investigated. METHODS AND RESULTS: Ethanol supplementation at a final concentration of 0.8% (v/v) caused an increase in the growth, astaxanthin production and fatty acid production of treated X. dendrorhous compared with untreated X. dendrorhous. Supplementation of meadowfoam oil with 0.8% ethanol further improved the growth and astaxanthin production of X. dendrorhous. Fatty acid compositions following supplementation with various concentrations of ethanol and oil were also analysed. With 0.8% ethanol supplementation, the ratio of linoleic acid (C18:2) and α-linolenic acid (C18:3ω3, ALA) decreased. Conversely, with 1.8% ethanol supplementation, the ALA ratio increased. CONCLUSIONS: Ethanol can serve as a promoting factor for coproduction of astaxanthin and fatty acids in X. dendrorhous, whereas simultaneous supplementation of ethanol and meadowfoam oil can cause further astaxanthin production. SIGNIFICANCE AND IMPACT OF STUDY: Astaxanthin is widely used in various functional products because of its antioxidant activity. This study shows that X. dendrorhous can coproduce astaxanthin and functional fatty acids at high levels following supplementation with ethanol.


Asunto(s)
Basidiomycota , Productos Biológicos , Etanol , Ácidos Grasos , Xantófilas
4.
Mar Drugs ; 19(8)2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34436301

RESUMEN

The valuable marine carotenoid, astaxanthin, is used in supplements, medicines and cosmetics. In this study, crustacyanin, an astaxanthin-binding protein, was used to solubilize and concentrate astaxanthin. The recombinant crustacyanin of European lobster spontaneously formed an inclusion body when it was over-expressed in Escherichia coli. In this study, fusing the NusA-tag to the crustacyanin subunits made it possible to express in a soluble fraction and solubilize astaxanthin in aqueous solution. By cutting off the NusA-tag, the crustacyanin subunits generated the pure insoluble form, and captured and concentrated astaxanthin. Overall, the attaching and releasing NusA-tag method has the potential to supply solubilized carotenoids in aqueous solution and concentrated carotenoids, respectively.


Asunto(s)
Carotenoides/química , Crustáceos , Animales , Organismos Acuáticos , Productos Biológicos , Conformación Proteica , Solubilidad , Xantófilas/química
5.
Mar Drugs ; 19(5)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34068940

RESUMEN

Carotenoids are used commercially for dietary supplements, cosmetics, and pharmaceuticals because of their antioxidant activity. In this study, colored microorganisms were isolated from deep sea sediment that had been collected from Suruga Bay, Shizuoka, Japan. One strain was found to be a pure yellow carotenoid producer, and the strain was identified as Sphingomonas sp. (Proteobacteria) by 16S rRNA gene sequence analysis; members of this genus are commonly isolated from air, the human body, and marine environments. The carotenoid was identified as nostoxanthin ((2,3,2',3')-ß,ß-carotene-2,3,2',3'-tetrol) by mass spectrometry (MS), MS/MS, and ultraviolet-visible absorption spectroscopy (UV-Vis). Nostoxanthin is a poly-hydroxy yellow carotenoid isolated from some photosynthetic bacteria, including some species of Cyanobacteria. The strain Sphingomonas sp. SG73 produced highly pure nostoxanthin of approximately 97% (area%) of the total carotenoid production, and the strain was halophilic and tolerant to 1.5-fold higher salt concentration as compared with seawater. When grown in 1.8% artificial sea salt, nostoxanthin production increased by 2.5-fold as compared with production without artificial sea salt. These results indicate that Sphingomonas sp. SG73 is an efficient producer of nostoxanthin, and the strain is ideal for carotenoid production using marine water because of its compatibility with sea salt.


Asunto(s)
Sedimentos Geológicos/microbiología , Sphingomonas/aislamiento & purificación , Sphingomonas/metabolismo , Xantófilas/aislamiento & purificación , Xantófilas/metabolismo , Japón , Filogenia , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Sales (Química)/farmacología , Agua de Mar , Sphingomonas/genética , Espectrometría de Masas en Tándem , Xantófilas/análisis , Xantófilas/química
6.
Environ Sci Pollut Res Int ; 28(10): 12640-12647, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33089462

RESUMEN

Developing a use for the inedible parts of citrus, mainly peel, would have great environmental and economic benefits worldwide. Astaxanthin is a value-added fine chemical that affects fish pigmentation and has recently been used in healthcare products for humans, resulting in an increased demand. This study aimed to produce astaxanthin from a citrus, ponkan, peel extract using the yeast Xanthophyllomyces dendrorhous, which has the ability to use both pentose and hexose. Feeding on only ponkan peel extract enhanced X. dendrorhous growth and the concomitant astaxanthin production. Additionally, we determined that pectin and its arabinose content were the main substrate and sole carbon source, respectively, for X. dendrorhous growth and astaxanthin production. Thus, ponkan peel extract could become a valuable resource for X. dendrorhous-based astaxanthin production. Using citrus peel extract for microbial fermentation will allow the development of processes that produce value-added chemicals from agricultural byproducts.


Asunto(s)
Basidiomycota , Citrus , Animales , Humanos , Extractos Vegetales , Xantófilas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA