Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Pharmacol ; 8: 805, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29184495

RESUMEN

Memory impairments in Alzheimer's disease (AD) occur due to degenerated axons and disrupted neural networks. Since only limited recovery is possible after the destruction of neural networks, preventing axonal degeneration during the early stages of disease progression is necessary to prevent AD. Polygalae Radix (roots of Polygala tenuifolia; PR) is a traditional herbal medicine used for sedation and amnesia. In this study, we aimed to clarify and analyze the preventive effects of PR against memory deficits in a transgenic AD mouse model, 5XFAD. 5XFAD mice demonstrated memory deficits at the age of 5 months. Thus, the water extract of Polygalae Radix (PR extract) was orally administered to 4-month-old 5XFAD mice that did not show signs of memory impairment. After consecutive administrations for 56 days, the PR extract prevented cognitive deficit and axon degeneration associated with the accumulation of amyloid ß (Aß) plaques in the perirhinal cortex of the 5XFAD mice. PR extract did not influence the formation of Aß plaques in the brain of the 5XFAD mice. In cultured neurons, the PR extract prevented axonal growth cone collapse and axonal atrophy induced by Aß. Additionally, it prevented Aß-induced endocytosis at the growth cone of cultured neurons. Our previous study reported that endocytosis inhibition was enough to prevent Aß-induced growth cone collapse, axonal degeneration, and memory impairments. Therefore, the PR extract possibly prevented axonal degeneration and memory impairment by inhibiting endocytosis. PR is the first preventive drug candidate for AD that inhibits endocytosis in neurons.

2.
Biochem J ; 443(2): 525-34, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22257159

RESUMEN

EGCG [(-)-epigallocatechin-3-O-gallate], the major polyphenol of green tea, has cancer chemopreventive and chemotherapeutic activities. EGCG selectively inhibits cell growth and induces apoptosis in cancer cells without adversely affecting normal cells; however, the underlying molecular mechanism in vivo is unclear. In the present study, we show that EGCG-induced apoptotic activity is attributed to a lipid-raft clustering mediated through 67LR (67 kDa laminin receptor) that is significantly elevated in MM (multiple myeloma) cells relative to normal peripheral blood mononuclear cells, and that aSMase (acid sphingomyelinase) is critical for the lipid-raft clustering and the apoptotic cell death induced by EGCG. We also found that EGCG induces aSMase translocation to the plasma membrane and PKCδ (protein kinase Cδ) phosphorylation at Ser664, which was necessary for aSMase/ceramide signalling via 67LR. Additionally, orally administered EGCG activated PKCδ and aSMase in a murine MM xenograft model. These results elucidate a novel cell-death pathway triggered by EGCG for the specific killing of MM cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Catequina/análogos & derivados , Microdominios de Membrana/efectos de los fármacos , Mieloma Múltiple/metabolismo , Proteína Quinasa C-delta/metabolismo , Receptores de Laminina/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Caspasa 3/metabolismo , Catequina/farmacología , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Humanos , Microdominios de Membrana/metabolismo , Ratones , Peso Molecular , Mieloma Múltiple/patología , Té/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA