Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mov Disord ; 39(4): 684-693, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38380765

RESUMEN

BACKGROUND: The ventral intermediate nucleus of the thalamus (VIM) is an effective target for deep brain stimulation in tremor patients. Despite its therapeutic importance, its oscillatory coupling to cortical areas has rarely been investigated in humans. OBJECTIVES: The objective of this study was to identify the cortical areas coupled to the VIM in patients with essential tremor. METHODS: We combined resting-state magnetoencephalography with local field potential recordings from the VIM of 19 essential tremor patients. Whole-brain maps of VIM-cortex coherence in several frequency bands were constructed using beamforming and compared with corresponding maps of subthalamic nucleus (STN) coherence based on data from 19 patients with Parkinson's disease. In addition, we computed spectral Granger causality. RESULTS: The topographies of VIM-cortex and STN-cortex coherence were very similar overall but differed quantitatively. Both nuclei were coupled to the ipsilateral sensorimotor cortex in the high-beta band; to the sensorimotor cortex, brainstem, and cerebellum in the low-beta band; and to the temporal cortex, brainstem, and cerebellum in the alpha band. High-beta coherence to sensorimotor cortex was stronger for the STN (P = 0.014), whereas low-beta coherence to the brainstem was stronger for the VIM (P = 0.017). Although the STN was driven by cortical activity in the high-beta band, the VIM led the sensorimotor cortex in the alpha band. CONCLUSIONS: Thalamo-cortical coupling is spatially and spectrally organized. The overall similar topographies of VIM-cortex and STN-cortex coherence suggest that functional connections are not necessarily unique to one subcortical structure but might reflect larger frequency-specific networks involving VIM and STN to a different degree. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Magnetoencefalografía , Núcleo Subtalámico , Humanos , Masculino , Femenino , Persona de Mediana Edad , Magnetoencefalografía/métodos , Núcleo Subtalámico/fisiología , Núcleo Subtalámico/fisiopatología , Anciano , Estimulación Encefálica Profunda/métodos , Temblor Esencial/fisiopatología , Temblor Esencial/terapia , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Tálamo/fisiología , Tálamo/fisiopatología , Mapeo Encefálico , Corteza Cerebral/fisiopatología , Núcleos Talámicos Ventrales/fisiología , Núcleos Talámicos Ventrales/fisiopatología
2.
Clin Neurophysiol ; 129(5): 959-966, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29554578

RESUMEN

OBJECTIVE: To assess whether high frequency oscillations (HFOs, >150 Hz), known to occur in basal ganglia nuclei, can be observed in the thalamus. METHODS: We recorded intraoperative local field potentials from the ventral intermediate nucleus (VIM) of the thalamus in patients with Essential Tremor (N = 16), Parkinsonian Tremor (3), Holmes Tremor (2) and Dystonic Tremor (1) during implantation of electrodes for deep brain stimulation. Recordings were performed with up to five micro/macro-electrodes that were simultaneously advanced to the stereotactic target. RESULTS: Thalamic HFOs occurred in all investigated tremor syndromes. A detailed analysis of the Essential Tremor subgroup revealed that medial channels recorded HFOs more frequently than other channels. The highest peaks were observed 4 mm above target. Macro- but not microelectrode recordings were dominated by peaks in the slow HFO band (150-300 Hz), which were stable across several depths and channels. CONCLUSION: HFOs occur in the thalamus and are not specific to any of the tremors investigated. Their spatial distribution is not homogeneous, and their appearance depends on the type of electrode used for recording. SIGNIFICANCE: The occurrence of HFOs in the thalamus of tremor patients indicates that HFOs are not part of basal ganglia pathophysiology.


Asunto(s)
Potenciales de la Membrana/fisiología , Tálamo/fisiopatología , Temblor/fisiopatología , Anciano , Estimulación Encefálica Profunda , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuronas/fisiología , Temblor/terapia
3.
Ann Neurol ; 82(4): 592-601, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28892573

RESUMEN

OBJECTIVE: Freezing of gait is a poorly understood symptom of Parkinson disease, and can severely disrupt the locomotion of affected patients. However, bicycling ability remains surprisingly unaffected in most patients suffering from freezing, suggesting functional differences in the motor network. The purpose of this study was to characterize and contrast the oscillatory dynamics underlying bicycling and walking in the basal ganglia. METHODS: We present the first local field potential recordings directly comparing bicycling and walking in Parkinson disease patients with electrodes implanted in the subthalamic nuclei for deep brain stimulation. Low (13-22Hz) and high (23-35Hz) beta power changes were analyzed in 22 subthalamic nuclei from 13 Parkinson disease patients (57.5 ± 5.9 years old, 4 female). The study group consisted of 5 patients with and 8 patients without freezing of gait. RESULTS: In patients without freezing of gait, both bicycling and walking led to a suppression of subthalamic beta power (13-35Hz), and this suppression was stronger for bicycling. Freezers showed a similar pattern in general. Superimposed on this pattern, however, we observed a movement-induced, narrowband power increase around 18Hz, which was evident even in the absence of freezing. INTERPRETATION: These results indicate that bicycling facilitates overall suppression of beta power. Furthermore, movement leads to exaggerated synchronization in the low beta band specifically within the basal ganglia of patients susceptible to freezing. Abnormal ∼18Hz oscillations are implicated in the pathophysiology of freezing of gait, and suppressing them may form a key strategy in developing potential therapies. Ann Neurol 2017;82:592-601.


Asunto(s)
Ganglios Basales/fisiopatología , Ritmo beta/fisiología , Ciclismo/fisiología , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/fisiopatología , Estimulación Acústica , Estimulación Encefálica Profunda/métodos , Evaluación de la Discapacidad , Electroencefalografía , Potenciales Evocados Auditivos , Femenino , Trastornos Neurológicos de la Marcha/etiología , Humanos , Masculino , Trastornos Parkinsonianos/terapia , Análisis Espectral , Caminata
4.
J Vis Exp ; (111)2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27286467

RESUMEN

In spite of the success in applying non-invasive electroencephalography (EEG), magneto-encephalography (MEG) and functional magnetic resonance imaging (fMRI) for extracting crucial information about the mechanism of the human brain, such methods remain insufficient to provide information about physiological processes reflecting cognitive and emotional functions at the subcortical level. In this respect, modern invasive clinical approaches in humans, such as deep brain stimulation (DBS), offer a tremendous possibility to record subcortical brain activity, namely local field potentials (LFPs) representing coherent activity of neural assemblies from localized basal ganglia or thalamic regions. Notwithstanding the fact that invasive approaches in humans are applied only after medical indication and thus recorded data correspond to altered brain circuits, valuable insight can be gained regarding the presence of intact brain functions in relation to brain oscillatory activity and the pathophysiology of disorders in response to experimental cognitive paradigms. In this direction, a growing number of DBS studies in patients with Parkinson's disease (PD) target not only motor functions but also higher level processes such as emotions, decision-making, attention, memory and sensory perception. Recent clinical trials also emphasize the role of DBS as an alternative treatment in neuropsychiatric disorders ranging from obsessive compulsive disorder (OCD) to chronic disorders of consciousness (DOC). Consequently, we focus on the use of combined invasive (LFP) and non-invasive (EEG) human brain recordings in assessing the role of cortical-subcortical structures in cognitive and emotional processing trough experimental paradigms (e.g. speech stimuli with emotional connotation or paradigms of cognitive control such as the Flanker task), for patients undergoing DBS treatment.


Asunto(s)
Cognición , Emociones , Monitoreo Fisiológico , Estimulación Encefálica Profunda , Humanos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Tálamo
5.
Cortex ; 60: 94-102, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25444578

RESUMEN

We report on thalamic recordings in a patient with chronic disorder of consciousness (DOC). Implantation of central thalamic deep brain stimulation (CT-DBS) electrodes was chosen, as this treatment has been reported to display beneficial effects with respect to behavioural responsiveness in DOC. Local field potential (LFP) oscillations were recorded from central thalamic electrodes and their changes elicited by speech stimuli consisting either of familiar voices addressing the patient or unfamiliar non-addressing phrases were studied. In response to familiar-addressing speech we observed modulation of oscillatory activity in the beta and theta band within the central thalamus accompanied by an increase in thalamocortical coherence in the theta band. Furthermore, the theta phase was coupled to the amplitude of gamma locally in the thalamus. These findings indicate a local and long-range cross-frequency response which is not only indicative of the principle involvement of the central thalamus in processing emotional and cognitive information, but also point towards intact physiological functions that may serve as a marker in diagnosing DOC patients and determining novel targets and parameters concerning therapeutic efforts.


Asunto(s)
Ondas Encefálicas/fisiología , Cognición/fisiología , Trastornos de la Conciencia/fisiopatología , Emociones/fisiología , Tálamo/fisiología , Estimulación Acústica , Potenciales de Acción/fisiología , Mapeo Encefálico , Trastornos de la Conciencia/terapia , Estimulación Encefálica Profunda , Femenino , Humanos , Persona de Mediana Edad
6.
Arch Intern Med ; 164(8): 833-9; discussion 839, 2004 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-15111368

RESUMEN

A 69-year-old Judean man presents with chronic low-grade fever, pedal edema, and abdominal pain. His condition deteriorates over several weeks with the appearance of shortness and foulness of breath, pruritus, convulsions of every limb, and gangrene of the genitalia. Just before he dies, he orders dozens of the leading men of his kingdom imprisoned and instructs his sister to kill them all after he is gone. Who is he and what is the likely cause of his death?


Asunto(s)
Personajes , Gangrena de Fournier/historia , Fallo Renal Crónico/historia , Gangrena de Fournier/diagnóstico , Historia Antigua , Humanos , Israel , Judíos/historia , Fallo Renal Crónico/diagnóstico , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA