RESUMEN
Enterovirus A71 (EV-A71), a positive-stranded RNA virus of the Picornaviridae family, may cause neurological complications or fatality in children. We examined specific factors responsible for this virulence using a chemical genetics approach. Known compounds from an anti-EV-A71 herbal medicine, Salvia miltiorrhiza (Danshen), were screened for anti-EV-A71. We identified a natural product, rosmarinic acid (RA), as a potential inhibitor of EV-A71 by cell-based antiviral assay and in vivo mouse model. Results also show that RA may affect the early stage of viral infection and may target viral particles directly, thereby interfering with virus-P-selectin glycoprotein ligand-1 (PSGL1) and virus-heparan sulfate interactions without abolishing the interaction between the virus and scavenger receptor B2 (SCARB2). Sequencing of the plaque-purified RA-resistant viruses revealed a N104K mutation in the five-fold axis of the structural protein VP1, which contains positively charged amino acids reportedly associated with virus-PSGL1 and virus-heparan sulfate interactions via electrostatic attraction. The plasmid-derived recombinant virus harbouring this mutation was confirmed to be refractory to RA inhibition. Receptor pull-down showed that this non-positively charged VP1-N104 is critical for virus binding to heparan sulfate. As the VP1-N104 residue is conserved among different EV-A71 strains, RA may be useful for inhibiting EV-A71 infection, even for emergent virus variants. Our study provides insight into the molecular mechanism of virus-host interactions and identifies a promising new class of inhibitors based on its antiviral activity and broad spectrum effects against a range of EV-A71.
Asunto(s)
Antivirales/administración & dosificación , Proteínas de la Cápside/genética , Cinamatos/administración & dosificación , Depsidos/administración & dosificación , Enterovirus Humano A/patogenicidad , Infecciones por Enterovirus/tratamiento farmacológico , Salvia miltiorrhiza/química , Animales , Antivirales/farmacología , Proteínas de la Cápside/antagonistas & inhibidores , Proteínas de la Cápside/química , Línea Celular , Cinamatos/farmacología , Depsidos/farmacología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Enterovirus Humano A/efectos de los fármacos , Enterovirus Humano A/metabolismo , Infecciones por Enterovirus/virología , Heparitina Sulfato/metabolismo , Humanos , Células Jurkat , Glicoproteínas de Membrana/metabolismo , Ratones , Mutación , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Unión Proteica/efectos de los fármacos , Electricidad Estática , Factores de Virulencia/antagonistas & inhibidores , Factores de Virulencia/química , Factores de Virulencia/genética , Ácido RosmarínicoRESUMEN
Influenza virus remains an emerging virus and causes pandemics with high levels of fatality. After screening different plant extracts with potential anti-influenza activity, a water extract of Taxodium distichum stems (TDSWex) showed excellent activity against influenza viruses. The EC50 of TDSWex was 0.051 ± 0.024 mg/mL against influenza virus A/WSN/33. TDSWex had excellent antiviral efficacy against various strains of human influenza A and B viruses, particularly oseltamivir-resistant clinical isolates and a swine-origin influenza strain. We observed that the synthesis of viral RNA and protein were inhibited in the presence of TDSWex. The results of the time-of-addition assay suggested that TDSWex inhibited viral entry and budding. In the hemagglutination inhibition assay, TDSWex inhibited the hemagglutination of red blood cells, implying that the extract targeted hemagglutin-related functions such as viral entry. In the attachment and penetration assay, TDSWex showed antiviral activity with EC50s of 0.045 ± 0.026 and 0.012 ± 0.003 mg/mL, respectively. In addition, TDSWex blocked neuraminidase activity. We conclude that TDSWex has bimodal activities against both hemagglutinin and neuraminidase during viral replication.
Asunto(s)
Hemaglutininas/metabolismo , Neuraminidasa/metabolismo , Orthomyxoviridae/metabolismo , Extractos Vegetales/metabolismo , Taxodium/química , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Perros , Hemaglutininas/química , Humanos , Células de Riñón Canino Madin Darby , Microscopía Fluorescente , Neuraminidasa/antagonistas & inhibidores , Orthomyxoviridae/enzimología , Extractos Vegetales/química , Extractos Vegetales/toxicidad , ARN Viral/química , ARN Viral/metabolismo , Taxodium/metabolismo , Proteínas Virales/metabolismo , Internalización del Virus/efectos de los fármacos , Liberación del Virus/efectos de los fármacosRESUMEN
OBJECTIVES: Enterovirus 71 (EV-A71) is an important pathogen that can cause severe neurological symptoms and even death. Our aim was to identify potent anti-EV-A71 compounds and study their underlying mechanisms and in vivo activity. METHODS: We identified a potent imidazolidinone derivative (abbreviated to PR66) as an inhibitor of EV-A71 infection from the screening of compounds and subsequent structure-based modification. Time-course treatments and resistant virus selection of PR66 were employed to study the mode of mechanism of PR66. In vivo activity of PR66 was tested in the ICR strain of new-born mice challenged with EV-A71/4643/MP4. RESULTS: PR66 could impede the uncoating process during viral infection via interaction with capsid protein VP1, as shown by a resistant virus selection assay. Using site-directed mutagenesis, we confirmed that a change from valine to phenylalanine in the 179th amino acid residue of the cDNA-derived resistant virus resulted in resistance to PR66. PR66 increased the virion stability of WT viruses, but not the PR66-resistant mutant, in a particle stability thermal release assay. We further showed that PR66 had excellent anti-EV-A71 activity in an in vivo mouse model of disease, with a dose-dependent increase in survival rate and in protection against virus-induced hind-limb paralysis following oral or intraperitoneal administration. This was associated with reductions of viral titres in brain and muscle tissues. CONCLUSIONS: We demonstrated here for the first time that an imidazolidinone derivative (PR66) could protect against EV-A71-induced neurological symptoms in vivo by suppressing EV-A71 replication. This involved binding to and restricting viral uncoating.
Asunto(s)
Antivirales/metabolismo , Antivirales/farmacología , Cápside/efectos de los fármacos , Enterovirus Humano A/efectos de los fármacos , Animales , Antivirales/aislamiento & purificación , Línea Celular , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Infecciones por Enterovirus/tratamiento farmacológico , Infecciones por Enterovirus/virología , Humanos , Concentración 50 Inhibidora , Ratones Endogámicos ICR , Análisis de SupervivenciaRESUMEN
Bai Shao (BS, the root of Paeonia lactiflora Pall.), a common Chinese herb in many recipes used to treat viral infection and liver diseases, is recognized for its ability to nourish menstruation, its Yin convergence, and as an antiperspirant. However, the mechanism and components for its antiviral function remain to be elucidated. In this study, an ethanolic extract of BS was further partitioned into aqueous and organic parts (EAex) for in vitro functional study and in vivo efficacy testing. EAex exhibited an IC50 of 0.016 ± 0.005 mg/mL against influenza virus A/WSN/33 (H1N1), with broad-spectrum inhibitory activity against different strains of human influenza A viruses, including clinical oseltamivir-resistant isolates and an H1N1pdm strain. The synthesis of both viral RNA and protein was profoundly inhibited when the cells were treated with EAex. A time-of-addition assay demonstrated that EAex exerted its antiviral activity at various stages of the virus replication cycle. We addressed its antiviral activity at virus entry and demonstrated that EAex inhibits viral hemagglutination and viral binding to and penetration into host cells. In vivo animal testing showed that 200 mg/kg/d of EAex offered significant protection against viral infection. We conclude that BS possesses antiviral activity and has the potential for development as an anti-influenza agent.
Asunto(s)
Antivirales/farmacología , Medicina de Hierbas , Virus de la Influenza A/efectos de los fármacos , Paeonia/química , Extractos Vegetales/farmacología , Animales , Antivirales/administración & dosificación , Antivirales/aislamiento & purificación , Modelos Animales de Enfermedad , Virus de la Influenza A/fisiología , Concentración 50 Inhibidora , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/prevención & control , Extractos Vegetales/administración & dosificación , Extractos Vegetales/aislamiento & purificación , Resultado del Tratamiento , Internalización del Virus/efectos de los fármacosRESUMEN
Ischemia-reperfusion (I/R) injury of the heart can be attenuated by application of median nerve stimulation (MNS) through either electroacupuncture (EA) or local somatothermal stimulation (LSTS). This study is aimed to investigate the differences of myocardial protein expression between MNS by EA and by LSTS. Twenty-four male Sprague-Dawley rats were randomly allocated to 8 groups. In MNS by EA groups, animals were EA-stimulated for 30 min and the hearts were taken for proteomics analysis at an interval of 0 min (group 1), 30 min (group 2), 60 min (group 3) and control group (group 4); whereas in MNS by LSTS groups, following 1 dose (group 5), 2 doses (group 6), 3 doses (group 7) and control group (group 8) of LSTS, the hearts were taken for proteomics analysis. Myocardial protein expression profiles were analyzed and validated by Western blot analysis. Finally, the biological responses were also evaluated. The results showed that either MNS by EA followed by a 30-min rest period (group 2) and by 3 doses of LSTS (group 7) had cardioprotective effect against I/R injury. However, the myocardial protein expression profiles are quite different between the above-mentioned groups. We conclude that MNS by either EA or LSTS attenuates I/R injury in rat hearts through different protective mechanisms and that EA and LSTS might provide an alternative treatment strategy for ischemic heart disease.