Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Ethnopharmacol ; 312: 116484, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37044231

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Salvia officinalis L., Sambucus nigra L., Matricaria chamomilla L., Agrimonia eupatoria L., Fragaria vesca L. and Malva sylvestris L. are plants that have a long tradition in European folk medicine. To this day, they are part of medicinal teas or creams that help with the healing of skin wounds and the treatment of respiratory or intestinal infections. However, so far these plants have not been investigated more deeply than in their direct antibacterial effect. AIM OF THE STUDY: Our research is focused on adjuvants that inhibit the mechanism of antibiotic resistance or modulate bacterial virulence. Based on a preliminary screening of 52 European herbs, which commonly appear as part of tea blends or poultice. Six of them were selected for their ability to revert the resistant phenotype of nosocomial bacterial strains. METHODS: Herbs selected for this study were obtained from commercially available sources. For the extraction of active compounds ethanol was used. Modulation of virulence was observed as an ability to inhibit bacterial cell-to-cell communication using two mutant sensor strains of Vibrio campbellii. Biofilm formation, and planktonic cell adhesion was measured using a static antibiofilm test. Ethidium bromide assay was used to checked the potential of inhibition bacterial efflux pumps. The antibacterial activities of the herbs were evaluated against resistant bacterial strains using macro dilution methods. RESULTS: Alcohol extracts had antibacterial properties mainly against Gram-positive bacteria. Of all of them, the highest antimicrobial activity demonstrated Malva sylvestris, killing both antibiotic resistant bacteria; Staphylococcus aureus with MIC of 0.8 g/L and Pseudomonas aeruginosa 0.7 g/L, respectively. Fragaria vesca extract (0.08 g/L) demonstrated strong synergism with colistin (4 mg/L) in modulating the resistant phenotype to colistin of Pseudomonas aeruginosa. Similarly, the extract of S. officinalis (0.21 g/L) reverted resistance to gentamicin (1 mg/L) in S. aureus. However, Sambucus nigra and Matricaria chamomilla seem to be a very promising source of bacterial efflux pump inhibitors. CONCLUSION: The extract of F. vesca was the most active. It was able to reduce biofilm formation probably due to the ability to decrease bacterial quorum sensing. On the other hand, the activity of S. nigra or M. chamomilla in reducing bacterial virulence may be explained by the ability to inhibit bacterial efflux systems. All these plants have potential as an adjuvant for the antibiotic treatment.


Asunto(s)
Plantas Medicinales , Staphylococcus aureus , Extractos Vegetales/farmacología , Virulencia , Colistina/farmacología , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Bacterias , Pseudomonas aeruginosa , Biopelículas
2.
Antibiotics (Basel) ; 9(7)2020 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-32664528

RESUMEN

The inhibition and eradication of oral biofilms is increasingly focused on the use of plant extracts as mouthwashes and toothpastes adjuvants. Here, we report on the chemical composition and the antibiofilm activity of 15 methanolic extracts of Iris species against both mono-(Pseudomonas aeruginosa, Staphylococcus aureus) and multi-species oral biofilms (Streptococcus gordonii, Veillonella parvula, Fusobacterium nucleatum subsp. nucleatum, and Actinomyces naeslundii). The phytochemical profiles of Iris pallida s.l., Iris versicolor L., Iris lactea Pall., Iris carthaliniae Fomin, and Iris germanica were determined by ultra-high performance liquid chromatography-high-resolution tandem mass spectroscopy (UHPLC-HRMS/MS) analysis, and a total of 180 compounds were identified among Iris species with (iso)flavonoid dominancy. I. pallida, I. versicolor, and I. germanica inhibited both the quorum sensing and adhesion during biofilm formation in a concentration-dependent manner. However, the extracts were less active against maturated biofilms. Of the five tested species, Iris pallida s.l. was the most effective at both inhibiting biofilm formation and disrupting existing biofilms, and the leaf extract exhibited the strongest inhibitory effect compared to the root and rhizome extracts. The cytotoxicity of the extracts was excluded in human fibroblasts. The inhibition of bacterial adhesion significantly correlated with myristic acid content, and quorum sensing inhibition correlated with the 7-ß-hydroxystigmast-4-en-3-one content. These findings could be useful for establishing an effective tool for the control of oral biofilms and thus dental diseases.

3.
Antibiotics (Basel) ; 9(8)2020 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-32722434

RESUMEN

Arrayan and peumo fruits are commonly used in the traditional medicine of Chile. In this study, the concentration of the extracts halving the bacterial viability and biofilms formation and disruption of the drug-sensitive and drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa was determined. The chemical composition of extracts was analyzed by high-resolution liquid chromatography coupled with mass spectrometry (U-HPLC/MS). The arrayan extract (Inhibitory concentration IC50 0.35 ± 0.01 mg/mL) was more effective than peumo extract (IC50 0.53 ± 0.02 mg/mL) in the inhibition of S. aureus planktonic cells. Similarly, the arrayan extract was more effective in inhibiting the adhesion (S. aureus IC50 0.23 ± 0.02 mg/mL, P. aeruginosa IC50 0.29 ± 0.02 mg/mL) than peumo extracts (S. aureus IC50 0.47 ± 0.03 mg/mL, P. aeruginosa IC50 0.35 ± 0.01 mg/mL). Both extracts inhibited quorum sensing in a concentration-dependent manner, and the most significant was the autoinducer-2 type communication inhibition by arrayan extract. Both extracts also disrupted preformed biofilm of P. aeruginosa (arrayan IC50 0.56 ± 0.04 mg/mL, peumo IC50 0.59 ± 0.04 mg/mL). However, neither arrayan nor peumo extracts disrupted S. aureus mature biofilm. U-HPLC/MS showed that both fruit extracts mainly possessed quercetin compounds; the peumo fruit extract also contained phenolic acids and phenylpropanoids. Our results suggested that both extracts could be used as natural antimicrobials for some skin and nosocomial infections.

4.
J Nanosci Nanotechnol ; 11(8): 6642-56, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22103064

RESUMEN

Paclitaxel is an important anticancer drug and is currently used to treat a variety of cancers, including ovarian carcinomas, breast cancer, non-small cell lung cancer, and AIDS-related Kaposi's sarcoma. The objectives of the studies were to assess and compare the safety and efficacy of EmPAC (a newly developed nanoemulsion formulation of paclitaxel) versus Taxol (the injectable formulation of paclitaxel involving the use of polyethylated or polyoxyl castor oil currently used in the clinic). The objectives were also to investigate the mechanism for the improved safety and efficacy of EmPAC over Taxol. These results showed that EmPAC had better anti-tumor efficacy than Taxol, according to in vitro cell culture studies and studies in animal tumor models. EmPAC had improved anti-tumor efficacy even in tumor cell lines that are known to be multi-drug resistant. Part of the mechanism of action for the improved efficacy may be related to EmPAC inducing greater cellular uptake of paclitaxel into tumor cells than Taxol did, according to the in vitro cell culture radioactive-labeled studies and in vitro cell culture antibody studies. It may also partly be because EmPAC delivered more paclitaxel to the tumor mass than Taxol, while the delivery of paclitaxel to other tissues (e.g., blood, muscle, liver, spleen, kidney and lung) were similar between the two formulations of paclitaxel, according to studies in animals with tumor xenograft. EmPAC also had better safety than Taxol according to toxicology studies in rabbits. This may be because EmPAC does not contain the toxic ingredients used in formulating Taxol (such as polyethylated or polyoxyl castor oil). These results support the clinical development of the nanoemulsion formulation of paclitaxel.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Emulsiones , Nanomedicina , Paclitaxel/uso terapéutico , Animales , Antineoplásicos Fitogénicos/metabolismo , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Humanos , Ratones , Paclitaxel/efectos adversos , Paclitaxel/farmacocinética , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA