Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 238(Pt 1): 117118, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37704075

RESUMEN

A biofilm consists of Gram positive and Gram-negative bacteria enclosed in a matrix. Industrial biofouling is caused by biofilms, which can exhibit antimicrobial resistance during infections. Many biofilm studies find that nearly all biofilm communities consist of Gram positive and Gram-negative bacteria. It is therefore necessary to better understand the conserved themes in biofilm formation to develop therapeutics based on biofilm formation. Plant extracts can effectively combat pathogenic bacterial biofilms. This study evaluated the antibacterial and antibiofilm activity of Aerva lanata flower extract against Staphylococcus aureus and Pseudomonas aeruginosa. Methanol extract of dried A. lanata flower was tested against S. aureus and P. aeruginosa to determine the antibacterial activity (10, 25, 50, 75, 100 µg/mL) resulted in a maximum of 0.5-1 log reduction and 2 log reduction in comparison to the control or untreated bacterial cells respectively. A. lanata showed maximum biofilm inhibition up to 1.5-fold and 1-fold against P. aeruginosa and S. aureus. Light microscopic analysis of biofilm treated with A. lanata extract showed efficient distortion of the biofilm matrix. Further, the in vivo analysis of A. lanata in the Artemia salina brine shrimp model showed >50% survival and thus proving the efficacy of A. lanata extract in rescuing the brine shrimps against P. aeruginosa and S. aureus infection.


Asunto(s)
Artemia , Staphylococcus aureus , Animales , Antibacterianos/farmacología , Bacterias Grampositivas , Bacterias , Bacterias Gramnegativas , Extractos Vegetales/farmacología , Flores , Biopelículas , Pruebas de Sensibilidad Microbiana
2.
Environ Res ; 236(Pt 1): 116718, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37481060

RESUMEN

In ancient times, herbal plants were considered one of the greatest gifts from nature that human beings could receive, and about 80% of these plants have medicinal uses. In traditional medicine, Mentha arvensis, commonly known as mint, has many applications, and in the present study, the mint leaf extract has been used to synthesis nanoparticles using the mint leaf extract as a biosource for the extraction of nanoparticles. In addition to having a wide range of applications in various fields, calcium oxide (CaO) nanoparticles are also considered to be safe for human use. In order to assess the characteristics of the abstracted CaO nanoparticles, UV-visible absorption spectrophotometers, Fourier Transform Infrared spectrophotometers (FTIR), Scanning Electron Microscopes (SEMs), Dynamic Light Scattering (DLS), and X-ray Diffraction Spectrophotometers (XRDs) were used. By conducting a protein denaturation assay and nitric oxide scavenging assay, mint leaf mediated CaO nanoparticles were evaluated for their therapeutic applications. MTT assays were used to prove that the CaO nanoparticles mediated by mint leaf had anti-cancer properties. By examining the ability of mint leaf mediated CaO nanoparticles to degrade various dyes such as methyl red, methyl orange, and methylene blue, which are the most used azo dyes in textile industries resulting in water contamination, the ability of these nanoparticles to act as a photocatalytic agent was examined.


Asunto(s)
Mentha , Nanopartículas del Metal , Nanopartículas , Humanos , Extractos Vegetales/farmacología , Colorantes , Difracción de Rayos X , Antiinflamatorios , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA