Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biotechnol Appl Biochem ; 71(4): 753-765, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38436528

RESUMEN

This study aimed to assess the technical feasibility of incorporating selenized Lactobacillus spp. microencapsulated via spray drying into cattle feed. Gum Arabic and maltodextrin were used as encapsulating agents. The encapsulation process was carried out with a drying air flow rate of 1.75 m3/min, inlet air temperature of 90°C, and outlet air temperature of 75°C. The viability of the encapsulated microorganisms and the technological characteristics of the obtained microparticles were evaluated. Microorganisms were incorporated into beef cattle feed to supplement their diet with up to 0.3 mg of Se per kilogram of feed. The encapsulated particles, consisting of a 50/50 ratio of gum Arabic/maltodextrin at a 1:20 proportion of selenized biomass to encapsulant mixture, exhibited superior technical viability for application in beef cattle feed. Supplemented feeds displayed suitable moisture, water activity, and hygroscopicity values, ensuring the preservation of viable microorganisms for up to 5 months of storage, with an approximate count of 4.5 log CFU/g. Therefore, supplementing beef cattle feed with selenized and microencapsulated lactic acid bacteria represents a viable technological alternative, contributing to increased animal protein productivity through proper nutrition.


Asunto(s)
Alimentación Animal , Suplementos Dietéticos , Secado por Pulverización , Animales , Bovinos , Alimentación Animal/análisis , Selenio/química , Polisacáridos/química , Lactobacillus/metabolismo , Composición de Medicamentos , Goma Arábiga/química
2.
Nat Prod Res ; 38(10): 1647-1651, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37203185

RESUMEN

Baccharis vulneraria Baker is used popularly for the treatment of skin infections. So, this study aimed investigate the antimicrobial activity and chemical characterization of the essential oil (EO) against microorganisms that cause cutaneous infections. The EO was analyzed by GC-MS. The antimicrobial test was performed using the serial microdilution method, and the antimicrobial activity was determined by the minimum inhibitory concentration against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, Trichophyton interdigitale, Trichophyton rubrum, Fusarium solani and Fusarium oxysporum within the 32-0.0625 mg/mL concentration range. Were identified 31 EO compounds. Its major compounds are bicyclogermacrene, trans-cadin-1,4-diene, ß-caryophyllene, and germacrene A. EO showed antifungal action against T. rubrum and T. interdigitale (2 and 4 mg/mL MIC, respectively). The growth of C. albicans, at 4 mg/mL, decreased by 50% compared to control. The oil had no significant potential for other microorganisms at the selected concentrations.


Asunto(s)
Antiinfecciosos , Baccharis , Aceites Volátiles , Aceites Volátiles/química , Antiinfecciosos/farmacología , Antifúngicos/farmacología , Candida albicans , Pruebas de Sensibilidad Microbiana
3.
Food Chem ; 429: 136974, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37499504

RESUMEN

The intricate balance between the beneficial and harmful effects of selenium (Se) intake means that its quantification in food needs to be done correctly. Therefore, in this review, we systematized 105 articles to identify the most studied methodologies, analytical techniques, and food matrices. Among the analytical techniques employed, inductively coupled plasma mass spectrometry (ICP-MS) (n = 29) emerged as the most commonly used method. The most prevalent hydrolysis methodology to digest Se in food matrices involved the use of nitric acid combined with ultrasound, which improved both the yield and digestion time. Optimal recovery values were achieved when total Se quantification accounted for the sum of Se(IV) and Se(VI) (94.4-99.4%) and for SeCys (88-96.5%). These findings are relevant for advancing methodological approaches, and their results emphasize the importance of developing alternative, faster, and lower-cost protocols for Se quantification in foods and beverages.


Asunto(s)
Análisis de los Alimentos , Selenio/química , Bebidas/análisis , Límite de Detección
4.
Braz. J. Pharm. Sci. (Online) ; 55: e17584, 2019. tab
Artículo en Inglés | LILACS | ID: biblio-1039064

RESUMEN

In South American folk medicine members of the genus Myrciaria are used for the treatment of malaria, diarrhoea, asthma, inflammation and post-partum uterine cleansing. The aim of this work was to evaluate its antileishmanial properties (in vitro) of essential oil derived from leaves of Myrciaria plinioides D. Legrand, a plant species that is native in South of Brazil. The essential oil was obtained by hydro-distillation using fresh leaves of M. plinioides. The chemical composition of this essential oil (MPEO, M. plinioides essential oil) was determined by gas chromatography coupled to mass spectrometry (GC-MS). MPEO was assayed in vitro for antileishmanial properties against promastigotes of Leishmania amazonensis and Leishmania infantum, and for cytotoxicity against murine peritoneal macrophages. The MPEO comprised 66 components and was rich in oxygenated sesquiterpenes (82.66%) containing spathulenol (21.12%) as its major constituent. The MPEO was effective against L. amazonensis with IC50 value of 14.16 ± 7.40 µg/mL, while against L. infantum the IC50 value was higher with 101.50 ± 5.78 µg/mL. The MPEO showed significant activity against L. amazonensis, and presented a selectivity index (SI) of 6.60. The results suggest that the essential oil from leaves of M. plinioides is a promising source for new antileishmanial agents against L. amazonensis.


Asunto(s)
Técnicas In Vitro/instrumentación , Brasil/etnología , Aceites Volátiles/análisis , Myrtaceae/anatomía & histología , Leishmania infantum , Hojas de la Planta/clasificación , Leishmania
5.
J Dairy Sci ; 101(12): 10626-10635, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30316597

RESUMEN

Selenium is an essential micronutrient for living beings, as it helps to maintain the normal physiological functions of the organism. The numerous discoveries involving the importance of this element to the health of human beings have fostered interest in research to develop enriched and functional foods. The present study evaluated the potential for bacterial strains of Enterococcus faecalis (CH121 and CH124), Lactobacillus parabuchneri (ML4), Lactobacillus paracasei (ML13, ML33, CH135, and CH139), and Lactobacillus plantarum (CH131) to bioaccumulate Se in their biomass by adding different concentrations of sodium selenite (30 to 200 mg/L) to the culture medium. Quantification of Se with UV and visible molecular absorption spectroscopy showed that the investigated bacteria were able to bioaccumulate this micromineral into their biomass. Two of the L. paracasei strains (ML13 and CH135) bioaccumulated the highest Se concentrations (38.1 ± 1.7 mg/g and 40.7 ± 1.1 mg/g, respectively) after culture in the presence of 150 mg/L of Se. This bioaccumulation potential has applications in the development of dairy products and may be an alternative Se source in the diets of humans and other animals.


Asunto(s)
Enterococcus faecalis/metabolismo , Lactobacillus/metabolismo , Selenio/metabolismo , Animales , Bovinos , Medios de Cultivo/análisis , Medios de Cultivo/metabolismo , Productos Lácteos/microbiología , Enterococcus faecalis/genética , Enterococcus faecalis/crecimiento & desarrollo , Humanos , Ácido Láctico/metabolismo , Lactobacillus/crecimiento & desarrollo , Selenito de Sodio/análisis , Selenito de Sodio/metabolismo
6.
Food Chem ; 255: 182-186, 2018 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-29571465

RESUMEN

The present paper describes the validation of a spectrophotometry method involving molecular absorption in the visible ultraviolet-visible (UV-Vis) region for selenium (Se) determination in the bacterial biomass produced by lactic acid bacteria (LAB). The method was found to be suitable for the target application and presented a linearity range from 0.025 to 0.250 mg/L Se. The angular and linear coefficients of the linear equation were 1.0678 and 0.0197 mg/L Se, respectively, and the linear correlation coefficient (R2) was 0.9991. Analyte recovery exceeded 96% with a relative standard deviation (RSD) below 3%. The Se contents in LAB ranged from 0.01 to 20 mg/g. The Se contents in the bacterial biomass determined by UV-Vis were not significantly different (p > 0.05) those determined by graphite furnace atomic absorption spectrometry. Thus, Se can be quantified in LAB biomass using this relatively simpler technique.


Asunto(s)
Lactobacillus/química , Selenio/análisis , Espectrofotometría Ultravioleta/métodos , Biomasa , Espectrofotometría Atómica/métodos
7.
J Environ Sci Health B ; 53(4): 229-236, 2018 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-29319411

RESUMEN

The aim of this study was to develop a cantilever nanobiosensor for atrazine detection in liquid medium by immobilising the biological recognition element (tyrosinase vegetal extract) on its surface with self-assembled monolayers using gold, 16-mercaptohexadecanoic acid, 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/n-hydroxysuccinimide. Cantilever nanobiosensors presented a surface compression tension increase when atrazine concentrations were increased, with a limit of detection and limit of quantification of 7.754 ppb (parts per billion) and 22.792 ppb, respectively. From the voltage results obtained, the evaluation of atrazine contamination in river and drinking water were very close to those of the reference sample and ultrapure water, demonstrating the ability of the cantilever nanobiosensor to distinguish different water samples and different concentrations of atrazine. Cantilever nanosensor surface functionalization was characterised by combining polarisation modulation infrared reflection-absorption spectroscopy and atomic force microscopy and indicating film thickness in nanometric scale (80.2 ± 0.4 nm). Thus, the cantilever nanobiosensor developed for this study using low cost tyrosinase vegetal extract was adequate for atrazine detection, a potential tool in the environmental field.


Asunto(s)
Atrazina/análisis , Técnicas Biosensibles , Monofenol Monooxigenasa/metabolismo , Nanotecnología , Agua Potable/química , Contaminación de Alimentos/análisis , Oro/química , Herbicidas/análisis , Imidas/química , Límite de Detección , Musa/química , Musa/enzimología , Ácidos Palmíticos/química , Extractos Vegetales/química , Propilaminas/química , Ríos/química , Propiedades de Superficie
8.
Braz. j. microbiol ; 47(2): 424-430, Apr.-June 2016. tab
Artículo en Inglés | LILACS | ID: lil-780849

RESUMEN

Abstract Despite recent advances in food production technology, food-borne diseases (FBD) remain a challenging public health concern. In several countries, including Brazil, Clostridium perfringens is among the five main causative agents of food-borne diseases. The present study determines antimicrobial activities of essential oils of six condiments commonly used in Brazil, viz., Ocimum basilicum L. (basil), Rosmarinus officinalis L. (rosemary), Origanum majorana L. (marjoram), Mentha × piperita L. var. Piperita (peppermint), Thymus vulgaris L. (thyme) and Pimpinella anisum L. (anise) against C. perfringens strain A. Chemical compositions of the oils were determined by GC–MS (gas chromatography–mass spectrometry). The identities of the isolated compounds were established from the respective Kováts indices, and a comparison of mass spectral data was made with those reported earlier. The antibacterial activity was assessed from minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using the microdilution method. Minimum inhibitory concentration values were 1.25 mg mL-1 for thyme, 5.0 mg mL-1 for basil and marjoram, and 10 mg mL-1 for rosemary, peppermint and anise. All oils showed bactericidal activity at their minimum inhibitory concentration, except anise oil, which was only bacteriostatic. The use of essential oils from these common spices might serve as an alternative to the use of chemical preservatives in the control and inactivation of pathogens in commercially produced food systems.


Asunto(s)
Aceites de Plantas/farmacología , Aceites Volátiles/farmacología , Clostridium perfringens/efectos de los fármacos , Antibacterianos/farmacología , Aceites de Plantas/análisis , Brasil , Aceites Volátiles/análisis , Pruebas de Sensibilidad Microbiana , Clostridium perfringens/crecimiento & desarrollo , Ocimum basilicum/química , Rosmarinus/química , Origanum/química , Thymus (Planta)/química , Cromatografía de Gases y Espectrometría de Masas , Antibacterianos/análisis
9.
Braz J Microbiol ; 47(2): 424-30, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26991289

RESUMEN

Despite recent advances in food production technology, food-borne diseases (FBD) remain a challenging public health concern. In several countries, including Brazil, Clostridium perfringens is among the five main causative agents of food-borne diseases. The present study determines antimicrobial activities of essential oils of six condiments commonly used in Brazil, viz., Ocimum basilicum L. (basil), Rosmarinus officinalis L. (rosemary), Origanum majorana L. (marjoram), Mentha × piperita L. var. Piperita (peppermint), Thymus vulgaris L. (thyme) and Pimpinella anisum L. (anise) against C. perfringens strain A. Chemical compositions of the oils were determined by GC-MS (gas chromatography-mass spectrometry). The identities of the isolated compounds were established from the respective Kováts indices, and a comparison of mass spectral data was made with those reported earlier. The antibacterial activity was assessed from minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using the microdilution method. Minimum inhibitory concentration values were 1.25mgmL(-1) for thyme, 5.0mgmL(-1) for basil and marjoram, and 10mgmL(-1) for rosemary, peppermint and anise. All oils showed bactericidal activity at their minimum inhibitory concentration, except anise oil, which was only bacteriostatic. The use of essential oils from these common spices might serve as an alternative to the use of chemical preservatives in the control and inactivation of pathogens in commercially produced food systems.


Asunto(s)
Antibacterianos/farmacología , Clostridium perfringens/efectos de los fármacos , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Antibacterianos/análisis , Brasil , Clostridium perfringens/crecimiento & desarrollo , Cromatografía de Gases y Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Ocimum basilicum/química , Aceites Volátiles/análisis , Origanum/química , Aceites de Plantas/análisis , Rosmarinus/química , Thymus (Planta)/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA