Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 308(6): H637-50, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25576627

RESUMEN

Ubiquitously expressed Trpm2 channel limits oxidative stress and preserves mitochondrial function. We first demonstrated that intracellular Ca(2+) concentration increase after Trpm2 activation was due to direct Ca(2+) influx and not indirectly via reverse Na(+)/Ca(2+) exchange. To elucidate whether Ca(2+) entry via Trpm2 is required to maintain cellular bioenergetics, we injected adenovirus expressing green fluorescent protein (GFP), wild-type (WT) Trpm2, and loss-of-function (E960D) Trpm2 mutant into left ventricles of global Trpm2 knockout (gKO) or WT hearts. Five days post-injection, gKO-GFP heart slices had higher reactive oxygen species (ROS) levels but lower oxygen consumption rate (OCR) than WT-GFP heart slices. Trpm2 but not E960D decreased ROS and restored OCR in gKO hearts back to normal levels. In gKO myocytes expressing Trpm2 or its mutants, Trpm2 but not E960D reduced the elevated mitochondrial superoxide (O2(.-)) levels in gKO myocytes. After hypoxia-reoxygenation (H/R), Trpm2 but not E906D or P1018L (inactivates Trpm2 current) lowered O2(.-) levels in gKO myocytes and only in the presence of extracellular Ca(2+), indicating sustained Ca(2+) entry is necessary for Trpm2-mediated preservation of mitochondrial function. After ischemic-reperfusion (I/R), cardiac-specific Trpm2 KO hearts exhibited lower maximal first time derivative of LV pressure rise (+dP/dt) than WT hearts in vivo. After doxorubicin treatment, Trpm2 KO mice had worse survival and lower +dP/dt. We conclude 1) cardiac Trpm2-mediated Ca(2+) influx is necessary to maintain mitochondrial function and protect against H/R injury; 2) Ca(2+) influx via cardiac Trpm2 confers protection against H/R and I/R injury by reducing mitochondrial oxidants; and 3) Trpm2 confers protection in doxorubicin cardiomyopathy.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Cardiomiopatías/prevención & control , Metabolismo Energético , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/metabolismo , Canales Catiónicos TRPM/metabolismo , Potenciales de Acción , Animales , Cardiomiopatías/inducido químicamente , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/fisiopatología , Modelos Animales de Enfermedad , Doxorrubicina , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/metabolismo , Mutación , Contracción Miocárdica , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Estrés Oxidativo , Consumo de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Canales Catiónicos TRPM/deficiencia , Canales Catiónicos TRPM/genética , Factores de Tiempo , Transfección , Función Ventricular Izquierda , Presión Ventricular
2.
Am J Physiol Cell Physiol ; 306(8): C736-44, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24401846

RESUMEN

The existence of a local renin-angiotensin system (RAS) in neurons was first postulated 40 years ago. Further studies indicated intraneuronal generation of ANG II. However, the function and signaling mechanisms of intraneuronal ANG II remained elusive. Since ANG II type 1 receptor (AT1R) is the major type of receptor mediating the effects of ANG II, we used intracellular microinjection and concurrent Ca(2+) and voltage imaging to examine the functionality of intracellular AT1R in neurons. We show that intracellular administration of ANG II produces a dose-dependent elevation of cytosolic Ca(2+) concentration ([Ca(2+)]i) in hypothalamic neurons that is sensitive to AT1R antagonism. Endolysosomal, but not Golgi apparatus, disruption prevents the effect of microinjected ANG II on [Ca(2+)]i. Additionally, the ANG II-induced Ca(2+) response is dependent on microautophagy and sensitive to inhibition of PLC or antagonism of inositol 1,4,5-trisphosphate receptors. Furthermore, intracellular application of ANG II produces AT1R-mediated depolarization of hypothalamic neurons, which is dependent on [Ca(2+)]i increase and on cation influx via transient receptor potential canonical channels. In summary, we provide evidence that intracellular ANG II activates endolysosomal AT1Rs in hypothalamic neurons. Our results point to the functionality of a novel intraneuronal angiotensinergic pathway, extending the current understanding of intracrine ANG II signaling.


Asunto(s)
Angiotensina II/metabolismo , Neuronas/fisiología , Transducción de Señal/fisiología , Angiotensina II/administración & dosificación , Angiotensina II/farmacología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/administración & dosificación , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Animales Recién Nacidos , Calcio/metabolismo , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Femenino , Regulación de la Expresión Génica , Humanos , Hipotálamo/citología , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Microinyecciones , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/efectos de los fármacos , Receptor de Angiotensina Tipo 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA