Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 12(50): 55696-55709, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33249831

RESUMEN

Antibiotic-resistant bacteria are a severe threat to human health. The World Health Organization's Global Antimicrobial Surveillance System has revealed widespread occurrence of antibiotic resistance among half a million patients across 22 countries, with Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae being the most common resistant species. Antimicrobial nanoparticles are emerging as a promising alternative to antibiotics in the fight against antimicrobial resistance. In this work, selenium nanoparticles coated with the antimicrobial polypeptide, ε-poly-l-lysine, (Se NP-ε-PL) were synthesized and their antibacterial activity and cytotoxicity were investigated. Se NP-ε-PL exhibited significantly greater antibacterial activity against all eight bacterial species tested, including Gram-positive, Gram-negative, and drug-resistant strains, than their individual components, Se NP and ε-PL. The nanoparticles showed no toxicity toward human dermal fibroblasts at the minimum inhibitory concentrations, demonstrating a therapeutic window. Furthermore, unlike the conventional antibiotic kanamycin, Se NP-ε-PL did not readily induce resistance in E. coli or S. aureus. Specifically, S. aureus began to develop resistance to kanamycin from ∼44 generations, whereas it took ∼132 generations for resistance to develop to Se NP-ε-PL. Startlingly, E. coli was not able to develop resistance to the nanoparticles over ∼300 generations. These results indicate that the multifunctional approach of combining Se NP with ε-PL to form Se NP-ε-PL is a highly efficacious new strategy with wide-spectrum antibacterial activity, low cytotoxicity, and significant delays in development of resistance.


Asunto(s)
Antiinfecciosos/farmacología , Materiales Biocompatibles/química , Farmacorresistencia Bacteriana/efectos de los fármacos , Nanopartículas/química , Péptidos/química , Selenio/química , Antiinfecciosos/química , Materiales Biocompatibles/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Kanamicina/farmacología , Klebsiella pneumoniae/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Especies Reactivas de Oxígeno/metabolismo , Staphylococcus aureus/efectos de los fármacos
2.
Nanoscale ; 11(31): 14937-14951, 2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-31363721

RESUMEN

The overuse of antibiotics has induced the rapid development of antibiotic resistance in bacteria. As a result, antibiotic efficacy has become limited, and infection with multidrug-resistant bacteria is considered to be one of the largest global human health threats. Consequently, new, effective and safe antimicrobial agents need to be developed urgently. One promising candidate to address this requirement is selenium nanoparticles (Se NPs), which are made from the essential dietary trace element Se and have antimicrobial activity against Gram-positive bacteria. The size of nanomaterials can strongly affect their biophysical properties and functions; however, the effects of the size of Se NPs on their antibacterial efficacy has not been systematically investigated. Therefore, in this work, spherical Se NPs ranging from 43 to 205 nm in diameter were fabricated, and their mammalian cytotoxicity and antibacterial activity as a function of their size were systematically studied. The antibacterial activity of the Se NPs was shown to be strongly size dependent, with 81 nm Se NPs showing the maximal growth inhibition and killing effect of methicillin-sensitive and methicillin-resistant Staphylococcus aureus (MSSA and MRSA). The Se NPs were shown to have multi-modal mechanisms of action that depended on their size, including depleting internal ATP, inducing ROS production, and disrupting membrane potential. All the Se NPs were non-toxic towards mammalian cells up to 25 µg mL-1. Furthermore, the MIC value for the 81 nm particles produced in this research is 16 ± 7 µg mL-1, significantly lower than previously reported MIC values for Se NPs. This data illustrates that Se NP size is a facile yet critical and previously underappreciated parameter that can be tailored for maximal antimicrobial efficacy. We have identified that using Se NPs with a size of 81 nm and concentration of 10 µg mL-1 shows promise as a safe and efficient way to kill S. aureus without damaging mammalian cells.


Asunto(s)
Nanopartículas del Metal/química , Selenio/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Antiinfecciosos/química , Antiinfecciosos/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Potenciales de la Membrana/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Especies Reactivas de Oxígeno/metabolismo , Staphylococcus aureus/efectos de los fármacos
3.
Infect Immun ; 82(10): 4190-203, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25047849

RESUMEN

Porphyromonas gingivalis is associated with chronic periodontitis, an inflammatory disease of the tooth's supporting tissues. Macrophages are important in chronic inflammatory conditions, infiltrating tissue and becoming polarized to an M1 or M2 phenotype. As responses to stimuli differ between these phenotypes, we investigated the effect of P. gingivalis lipopolysaccharide (LPS) on M1 and M2 macrophages. M1 and M2 polarized macrophages were produced from murine bone marrow macrophages (BMMϕ) primed with gamma interferon (IFN-γ) or interleukin-4 (IL-4), respectively, and incubated with a low or high dose of P. gingivalis LPS or control TLR2 and TLR4 ligands. In M1-Mϕ, the high dose of P. gingivalis LPS (10 µg/ml) significantly increased the expression of CD40, CD86, inducible nitric oxide synthase, and nitric oxide secretion. The low dose of P. gingivalis LPS (10 ng/ml) did not induce costimulatory or antibacterial molecules but did increase the secretion of IL-1α, IL-6, IL-12p40, IL-12p70, and tumor necrosis factor alpha (TNF-α). P. gingivalis LPS marginally increased the expression of CD206 and YM-1, but it did enhance arginase expression by M2-Mϕ. Furthermore, the secretion of the chemokines KC, RANTES, eotaxin, and MCP-1 from M1, M2, and nonpolarized Mϕ was enhanced by P. gingivalis LPS. TLR2/4 knockout macrophages combined with the TLR activation assays indicated that TLR2 is the main activating receptor for P. gingivalis LPS and whole cells. In conclusion, although P. gingivalis LPS weakly activated M1-Mϕ or M2-Mϕ compared to control TLR ligands, it induced the secretion of inflammatory cytokines, particularly TNF-α from M1-Mϕ and IL-10 from M2-Mϕ, as well as chemotactic chemokines from polarized macrophages.


Asunto(s)
Citocinas/metabolismo , Lipopolisacáridos/inmunología , Activación de Macrófagos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Porphyromonas gingivalis/inmunología , Regulación hacia Arriba , Animales , Arginasa/metabolismo , Antígeno B7-2/análisis , Antígenos CD40/análisis , Células Cultivadas , Ratones , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA