Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Neurochem Res ; 39(6): 1104-17, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24352815

RESUMEN

The α4 subunit of the GABAA receptor (GABAAR) is highly expressed in the thalamus where receptors containing the α4 and δ subunits are major mediators of tonic inhibition. The α4 subunit also exhibits considerable plasticity in a number of physiological and pathological conditions, raising questions about the expression of remaining GABAAR subunits when the α4 subunit is absent. Immunohistochemical studies of an α4 subunit knockout (KO) mouse revealed a substantial decrease in δ subunit expression in the ventrobasal nucleus of the thalamus as well as other forebrain regions where the α4 subunit is normally expressed. In contrast, several subunits associated primarily with phasic inhibition, including the α1 and γ2 subunits, were moderately increased. Intracellular localization of the δ subunit was also altered. While δ subunit labeling was decreased within the neuropil, some labeling remained in the cell bodies of many neurons in the ventrobasal nucleus. Confocal microscopy demonstrated co-localization of this labeling with an endoplasmic reticulum marker, and electron microscopy demonstrated increased immunogold labeling near the endoplasmic reticulum in the α4 KO mouse. These results emphasize the strong partnership of the δ and α4 subunit in the thalamus and suggest that the α4 subunit of the GABAAR plays a critical role in trafficking of the δ subunit to the neuronal surface. The findings also suggest that previously observed reductions in tonic inhibition in the α4 subunit KO mouse are likely to be related to alterations in δ subunit expression, in addition to loss of the α4 subunit.


Asunto(s)
Subunidades de Proteína/análisis , Subunidades de Proteína/deficiencia , Receptores de GABA-A/análisis , Receptores de GABA-A/deficiencia , Tálamo/química , Tálamo/metabolismo , Animales , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados
2.
Front Pharmacol ; 2: 18, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21779248

RESUMEN

Alcohol (ethanol) is widely consumed for its desirable effects but unfortunately has strong addiction potential. Some imidazobenzodiazepines such as Ro15-4513 are able to antagonize many ethanol-induced behaviors. Controversial biochemical and pharmacological evidence suggest that the effects of these ethanol antagonists and ethanol are mediated specifically via overlapping binding sites on α4/δ-containing GABA(A)-Rs. To investigate the requirement of α4-containing GABA(A)-Rs in the mechanism of action of Ro15-4513 on behavior, wildtype (WT) and α4 knockout (KO) mice were compared for antagonism of ethanol-induced motor incoordination and hypnosis. Motor effects of ethanol were tested in two different fixed speed rotarod assays. In the first experiment, mice were injected with 2.0 g/kg ethanol followed 5 min later by 10 mg/kg Ro15-4513 (or vehicle) and tested on a rotarod at 8 rpm. In the second experiment, mice received a single injection of 1.5 g/kg ethanol ± 3 mg/kg Ro15-4513 and were tested on a rotarod at 12 rpm. In both experiments, the robust Ro15-4513 antagonism of ethanol-induced motor ataxia that was observed in WT mice was absent in KO mice. A loss of righting reflex (LORR) assay was used to test Ro15-4513 (20 mg/kg) antagonism of ethanol (3.5 g/kg)-induced hypnosis. An effect of sex was observed on the LORR assay, so males and females were analyzed separately. In male mice, Ro15-4513 markedly reduced ethanol-induced LORR in WT controls, but α4 KO mice were insensitive to this effect of Ro15-4513. In contrast, female KO mice did not differ from WT controls in the antagonistic effects of Ro15-4513 on ethanol-induced LORR. We conclude that Ro15-4513 requires α4-containing receptors for antagonism of ethanol-induced LORR (in males) and motor ataxia.

3.
J Neurotrauma ; 27(5): 901-10, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20121416

RESUMEN

We reported that adenosine A(1) receptor (A(1)AR) knockout (KO) mice develop lethal status epilepticus after experimental traumatic brain injury (TBI), which is not seen in wild-type (WT) mice. Studies in epilepsy, multiple sclerosis, and neuro-oncology suggest enhanced neuro-inflammation and/or neuronal death in A(1)AR KO. We hypothesized that A(1)AR deficiency exacerbates the microglial response and neuronal damage after TBI. A(1)AR KO and WT littermates were subjected to mild controlled cortical impact (3 m/sec; 0.5 mm depth) to left parietal cortex, an injury level below the acute seizure threshold in the KO. At 24 h or 7 days, mice were sacrificed and serial sections prepared. Iba-1 immunostaining was used to quantify microglia at 7 days. To assess neuronal injury, sections were stained with Fluoro-Jade C (FJC) at 24 h to evaluate neuronal death in the hippocampus and cresyl violet staining at 7 days to analyze cortical lesion volumes. We also studied the effects of adenosine receptor agonists and antagonists on (3)H-thymidine uptake (proliferation index) by BV-2 cells (immortalized mouse microglial). There was no neuronal death in CA1 or CA3 quantified by FJC. A(1)AR KO mice exhibited enhanced microglial response; specifically, Iba-1 + microglia were increased 20-50% more in A(1)AR KO versus WT in ipsilateral cortex, CA3, and thalamus, and contralateral cortex, CA1, and thalamus (p < 0.05). However, contusion and cortical volumes did not differ between KO and WT. Pharmacological studies in cultured BV-2 cells indicated that A(1)AR activation inhibits microglial proliferation. A(1)AR activation is an endogenous inhibitor of the microglial response to TBI, likely via inhibition of proliferation, and this may represent a therapeutic avenue to modulate microglia after TBI.


Asunto(s)
Lesiones Encefálicas/metabolismo , Gliosis/metabolismo , Inhibidores de Crecimiento/fisiología , Microglía/metabolismo , Receptor de Adenosina A1/metabolismo , Adenosina/metabolismo , Animales , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/patología , Línea Celular Transformada , Corteza Cerebral/lesiones , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Femenino , Gliosis/tratamiento farmacológico , Gliosis/patología , Inhibidores de Crecimiento/deficiencia , Inhibidores de Crecimiento/genética , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Ratones , Ratones Noqueados , Microglía/efectos de los fármacos , Microglía/patología , Degeneración Nerviosa/etiología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Receptor de Adenosina A1/deficiencia , Receptor de Adenosina A1/genética , Tálamo/patología
4.
Mol Ther ; 17(7): 1266-73, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19436271

RESUMEN

Maple syrup urine disease (MSUD; OMIM 248600) is an inborn error of metabolism of the branched chain alpha-ketoacid dehydrogenase (BCKDH) complex that is treated primarily by dietary manipulation of branched-chain amino acids (BCAA). Dietary restriction is lifelong and compliance is difficult. Liver transplantation significantly improves outcomes; however, alternative therapies are needed. To test novel therapies such as hepatocyte transplantation (HTx), we previously created a murine model of intermediate MSUD (iMSUD), which closely mimics human iMSUD. LacZ-positive murine donor hepatocytes were harvested and directly injected (10(5) cells/50 microl) into liver of iMSUD mice (two injections at 1-10 days of age). Donor hepatocytes engrafted into iMSUD recipient liver, increased liver BCKDH activity, improved blood total BCAA/alanine ratio, increased body weight at weaning, and extended the lifespan of HTx-treated iMSUD mice compared to phosphate-buffered saline (PBS)-treated and untreated iMSUD mice. Based on these data demonstrating partial metabolic correction of iMSUD in a murine model, coupled to the fact that multiple transplants are possible to enhance these results, we suggest that HTx represents a promising therapeutic intervention for MSUD that warrants further investigation.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Hepatocitos/trasplante , Enfermedad de la Orina de Jarabe de Arce/mortalidad , Enfermedad de la Orina de Jarabe de Arce/terapia , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/metabolismo , Animales , Peso Corporal , Modelos Animales de Enfermedad , Hígado/metabolismo , Enfermedad de la Orina de Jarabe de Arce/patología , Ratones , Fenotipo , Reacción en Cadena de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Supervivencia
5.
Brain ; 132(Pt 4): 903-18, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19293241

RESUMEN

Maple syrup urine disease (MSUD) is an inherited disorder of branched-chain amino acid metabolism presenting with life-threatening cerebral oedema and dysmyelination in affected individuals. Treatment requires life-long dietary restriction and monitoring of branched-chain amino acids to avoid brain injury. Despite careful management, children commonly suffer metabolic decompensation in the context of catabolic stress associated with non-specific illness. The mechanisms underlying this decompensation and brain injury are poorly understood. Using recently developed mouse models of classic and intermediate maple syrup urine disease, we assessed biochemical, behavioural and neuropathological changes that occurred during encephalopathy in these mice. Here, we show that rapid brain leucine accumulation displaces other essential amino acids resulting in neurotransmitter depletion and disruption of normal brain growth and development. A novel approach of administering norleucine to heterozygous mothers of classic maple syrup urine disease pups reduced branched-chain amino acid accumulation in milk as well as blood and brain of these pups to enhance survival. Similarly, norleucine substantially delayed encephalopathy in intermediate maple syrup urine disease mice placed on a high protein diet that mimics the catabolic stress shown to cause encephalopathy in human maple syrup urine disease. Current findings suggest two converging mechanisms of brain injury in maple syrup urine disease including: (i) neurotransmitter deficiencies and growth restriction associated with branched-chain amino acid accumulation and (ii) energy deprivation through Krebs cycle disruption associated with branched-chain ketoacid accumulation. Both classic and intermediate models appear to be useful to study the mechanism of brain injury and potential treatment strategies for maple syrup urine disease. Norleucine should be further tested as a potential treatment to prevent encephalopathy in children with maple syrup urine disease during catabolic stress.


Asunto(s)
Edema Encefálico/etiología , Enfermedad de la Orina de Jarabe de Arce/complicaciones , Aminoácidos/metabolismo , Animales , Conducta Animal , Encéfalo/patología , Edema Encefálico/patología , Edema Encefálico/prevención & control , Mapeo Encefálico/métodos , Proteínas en la Dieta/administración & dosificación , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Trastornos del Crecimiento/etiología , Trastornos del Crecimiento/metabolismo , Cetoácidos/metabolismo , Imagen por Resonancia Magnética/métodos , Enfermedad de la Orina de Jarabe de Arce/tratamiento farmacológico , Enfermedad de la Orina de Jarabe de Arce/patología , Ratones , Ratones Noqueados , Norleucina/uso terapéutico , Análisis de Supervivencia
6.
Eur J Neurosci ; 29(6): 1177-87, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19302153

RESUMEN

The sedative and hypnotic agent 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridine-3-ol (THIP) is a GABA(A) receptor (GABA(A)R) agonist that preferentially activates delta-subunit-containing GABA(A)Rs (delta-GABA(A)Rs). To clarify the role of delta-GABA(A)Rs in mediating the sedative actions of THIP, we utilized mice lacking the alpha(1)- or delta-subunit in a combined electrophysiological and behavioural analysis. Whole-cell patch-clamp recordings were obtained from ventrobasal thalamic nucleus (VB) neurones at a holding potential of -60 mV. Application of bicuculline to wild-type (WT) VB neurones revealed a GABA(A)R-mediated tonic current of 92 +/- 19 pA, which was greatly reduced (13 +/- 5 pA) for VB neurones of delta(0/0) mice. Deletion of the delta- but not the alpha(1)-subunit dramatically reduced the THIP (1 mum)-induced inward current in these neurones (WT, -309 +/- 23 pA; delta(0/0), -18 +/- 3 pA; alpha(1) (0/0), -377 +/- 45 pA). Furthermore, THIP selectively decreased the excitability of WT and alpha(1) (0/0) but not delta(0/0) VB neurones. THIP did not affect the properties of miniature inhibitory post-synaptic currents in any of the genotypes. No differences in rotarod performance and locomotor activity were observed across the three genotypes. In WT mice, performance of these behaviours was impaired by THIP in a dose-dependent manner. The effect of THIP on rotarod performance was blunted for delta(0/0) but not alpha(1) (0/0) mice. We previously reported that deletion of the alpha(1)-subunit abolished synaptic GABA(A) responses of VB neurones. Therefore, collectively, these findings suggest that extrasynaptic delta-GABA(A)Rs vs. synaptic alpha(1)-subunit-containing GABA(A)Rs of thalamocortical neurones represent an important molecular target underpinning the sedative actions of THIP.


Asunto(s)
Agonistas del GABA/farmacología , Isoxazoles/farmacología , Inhibición Neural/efectos de los fármacos , Receptores de GABA-A/fisiología , Tálamo/efectos de los fármacos , Análisis de Varianza , Animales , Animales Recién Nacidos , Bicuculina/farmacología , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica/métodos , Femenino , Antagonistas del GABA/farmacología , Glicinérgicos/farmacología , Técnicas In Vitro , Locomoción/efectos de los fármacos , Locomoción/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Inhibición Neural/genética , Técnicas de Placa-Clamp/métodos , Receptores de GABA-A/deficiencia , Receptores de GABA-A/genética , Estricnina/farmacología , Factores de Tiempo
7.
Neuropharmacology ; 56(2): 438-47, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18948126

RESUMEN

GABAergic neurons in the reticular thalamic nucleus (RTN) synapse onto thalamocortical neurons in the ventrobasal (VB) thalamus, and this reticulo-thalamocortical pathway is considered an anatomic target for general anesthetic-induced unconsciousness. A mutant mouse was engineered to harbor two amino acid substitutions (S270H, L277A) in the GABA(A) receptor (GABA(A)-R) alpha1 subunit; this mutation abolished sensitivity to the volatile anesthetic isoflurane in recombinant GABA(A)-Rs, and reduced in vivo sensitivity to isoflurane in the loss-of-righting-reflex assay. We examined the effects of the double mutation on GABA(A)-R-mediated synaptic currents and isoflurane sensitivity by recording from thalamic neurons in brain slices. The double mutation accelerated the decay, and decreased the (1/2) width of, evoked inhibitory postsynaptic currents (eIPSCs) in VB neurons and attenuated isoflurane-induced prolongation of the eIPSC. The hypnotic zolpidem, a selective modulator of GABA(A)-Rs containing the alpha1 subunit, prolonged eIPSC duration regardless of genotype, indicating that mutant mice incorporate alpha1 subunit-containing GABA(A)-Rs into synapses. In RTN neurons, which lack the alpha1 subunit, eIPSC duration was longer than in VB, regardless of genotype. Isoflurane reduced the efficacy of GABAergic transmission from RTN to VB, independent of genotype, suggesting a presynaptic action in RTN neurons. Consistent with this observation, isoflurane inhibited both tonic action potential and rebound burst firing in the presence of GABA(A)-R blockade. The suppressed excitability in RTN neurons is likely mediated by isoflurane-enhanced Ba(2+)-sensitive, but 4-aminopyridine-insenstive, potassium conductances. We conclude that isoflurane enhances inhibition of thalamic neurons in VB via GABA(A)-R-dependent, but in RTN via GABA(A)-R-independent, mechanisms.


Asunto(s)
Anestésicos por Inhalación/farmacología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Isoflurano/farmacología , Neuronas/efectos de los fármacos , Tálamo/citología , Ácido gamma-Aminobutírico/metabolismo , 4-Aminopiridina/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Alanina/genética , Animales , Biofisica , Relación Dosis-Respuesta a Droga , Agonistas del GABA/farmacología , Histidina/genética , Potenciales Postsinápticos Inhibidores/genética , Potenciales Postsinápticos Inhibidores/fisiología , Leucina/genética , Ratones , Ratones Transgénicos , Mutación , Inhibición Neural/efectos de los fármacos , Inhibición Neural/genética , Técnicas de Placa-Clamp/métodos , Bloqueadores de los Canales de Potasio/farmacología , Piridazinas/farmacología , Receptores de GABA-A/genética , Serina/genética , Factores de Tiempo
8.
J Pharmacol Exp Ther ; 326(2): 475-82, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18477766

RESUMEN

Drinking alcohol is associated with the disturbance of normal sleep rhythms, and insomnia is a major factor in alcoholic relapse. The thalamus is a brain structure that plays a pivotal role in sleep regulation and rhythmicity. A number of studies have implicated GABA(A) receptors (GABA(A)-Rs) in the anxiolytic, amnestic, sedative, and anesthetic effects of ethanol. In the present study, we examined the effects of ethanol on both synaptic and extrasynaptic GABA(A)-Rs of relay neurons in the thalamus. We found that ethanol (> or =50 mM) elicits a sustained current in thalamocortical relay neurons from the mouse ventrobasal thalamus, and this current is associated with a decrease in neuronal excitability and firing rate in response to depolarization. The steady current induced by ethanol was totally abolished by gabazine and was absent in relay neurons from GABA(A)-R alpha(4) subunit knockout mice, indicating that the effect of ethanol is to enhance tonic GABA-mediated inhibition. Ethanol (50 mM) enhanced the amplitude of tonic inhibition by nearly 50%. On the other hand, ethanol had no effect on spontaneous or evoked inhibitory postsynaptic currents (IPSCs) at 50 mM but did prolong IPSCs at 100 mM. Ethanol had no effect on the paired-pulse depression ratio, suggesting that the release of GABA from presynaptic terminals is insensitive to ethanol. We conclude that ethanol, at moderate (50 mM) but not low (10 mM) concentrations, can inhibit thalamocortical relay neurons and that this occurs mainly via the actions of ethanol at extrasynaptic GABA(A)-Rs containing GABA(A)-R alpha(4) subunits.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Potenciales de la Membrana/efectos de los fármacos , Neuronas/efectos de los fármacos , Receptores de GABA-A/metabolismo , Transmisión Sináptica/efectos de los fármacos , Tálamo/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Electrofisiología , Técnicas In Vitro , Ratones , Ratones Noqueados , Neuronas/metabolismo , Neuronas/fisiología , Técnicas de Placa-Clamp , Receptores de GABA-A/genética , Receptores de GABA-A/fisiología , Sueño/efectos de los fármacos , Tálamo/citología , Tálamo/metabolismo , Tálamo/fisiología
9.
J Neurosci ; 28(1): 106-15, 2008 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-18171928

RESUMEN

Taurine is one of the most abundant free amino acids in the brain. In a number of studies, taurine has been reported to activate glycine receptors (Gly-Rs) at moderate concentrations (> or = 100 microM), and to be a weak agonist at GABA(A) receptors (GABA(A)-Rs), which are usually activated at high concentrations (> or = 1 mM). In this study, we show that taurine reduced the excitability of thalamocortical relay neurons and activated both extrasynaptic GABA(A)-Rs and Gly-Rs in neurons in the mouse ventrobasal (VB) thalamus. Low concentrations of taurine (10-100 microM) decreased neuronal input resistance and firing frequency, and elicited a steady outward current under voltage clamp, but had no effects on fast inhibitory synaptic currents. Currents elicited by 50 microM taurine were abolished by gabazine, insensitive to midazolam, and partially blocked by 20 microM Zn2+, consistent with the pharmacological properties of extrasynaptic GABA(A)-Rs (alpha4beta2delta subtype) involved in tonic inhibition in the thalamus. Tonic inhibition was enhanced by an inhibitor of taurine transport, suggesting that taurine can act as an endogenous activator of these receptors. Taurine-evoked currents were absent in relay neurons from GABA(A)-R alpha4 subunit knock-out mice. The amplitude of the taurine current was larger in neurons from adult mice than juvenile mice. Taurine was a more potent agonist at recombinant alpha4beta2delta GABA(A)-Rs than at alpha1beta2gamma2 GABA(A)-Rs. We conclude that physiological concentrations of taurine can inhibit VB neurons via activation of extrasynaptic GABA(A)-Rs and that taurine may function as an endogenous regulator of excitability and network activity in the thalamus.


Asunto(s)
Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Receptores de GABA-A/metabolismo , Taurina/farmacología , Tálamo/efectos de los fármacos , Animales , Animales Recién Nacidos , Línea Celular Transformada , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica , Humanos , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/fisiología , Potenciales Postsinápticos Inhibidores/efectos de la radiación , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Neuronas/efectos de la radiación , Técnicas de Placa-Clamp/métodos , Receptores de GABA-A/deficiencia , Receptores de GABA-A/genética , Tálamo/citología , Transfección
10.
J Pharmacol Exp Ther ; 324(3): 1127-35, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18094320

RESUMEN

Volatile anesthetics are used clinically to produce analgesia, amnesia, unconsciousness, blunted autonomic responsiveness, and immobility. Previous work has shown that the volatile anesthetic isoflurane, at concentrations that produce unconsciousness (250-500 microM), enhances fast synaptic inhibition in the brain mediated by GABA(A) receptors (GABA(A)-Rs). In addition, isoflurane causes sedation at concentrations lower than those required to produce unconsciousness or analgesia. In this study, we found that isoflurane, at low concentrations (25-85 microM) associated with its sedative actions, elicits a sustained current associated with a conductance increase in thalamocortical neurons in the mouse ventrobasal (VB) nucleus. These isoflurane-evoked currents reversed polarity close to the Cl(-) equilibrium potential and were totally blocked by the GABA(A)-R antagonist gabazine. Isoflurane (25-250 microM) produced no sustained current in VB neurons from GABA(A)-R alpha(4)-subunit knockout (Gabra4(-/-)) mice, although 250 microM isoflurane enhanced synaptic inhibition in VB neurons from both wild-type and Gabra4(-/-) mice. These data indicate an obligatory requirement for alpha(4)-subunit expression in the generation of the isoflurane-activated current. In addition, isoflurane directly activated alpha(4)beta(2)delta GABA(A)-Rs expressed in human embryonic kidney 293 cells, and it was more potent at alpha(4)beta(2)delta than at alpha(1)beta(2)gamma(2) receptors (the presumptive extrasynaptic and synaptic GABA(A)-R subtypes in VB neurons). We conclude that the extrasynaptic GABA(A)-Rs of thalamocortical neurons are sensitive to low concentrations of isoflurane. In view of the crucial role of the thalamus in sensory processing, sleep, and cognition, the modulation of these extrasynaptic GABA(A)-Rs by isoflurane may contribute to the sedation and hypnosis associated with low doses of this anesthetic agent.


Asunto(s)
Isoflurano/farmacología , Receptores de GABA-A/fisiología , Sinapsis/fisiología , Tálamo/fisiología , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Sinapsis/efectos de los fármacos , Tálamo/efectos de los fármacos
11.
J Physiol ; 586(4): 965-87, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18063661

RESUMEN

Thalamic ventrobasal (VB) relay neurones express multiple GABA(A) receptor subtypes mediating phasic and tonic inhibition. During postnatal development, marked changes in subunit expression occur, presumably reflecting changes in functional properties of neuronal networks. The aims of this study were to characterize the properties of synaptic and extrasynaptic GABA(A) receptors of developing VB neurones and investigate the role of the alpha(1) subunit during maturation of GABA-ergic transmission, using electrophysiology and immunohistochemistry in wild type (WT) and alpha(1)(0/0) mice and mice engineered to express diazepam-insensitive receptors (alpha(1H101R), alpha(2H101R)). In immature brain, rapid (P8/9-P10/11) developmental change to mIPSC kinetics and increased expression of extrasynaptic receptors (P8-27) formed by the alpha(4) and delta subunit occurred independently of the alpha(1) subunit. Subsequently (> or = P15), synaptic alpha(2) subunit/gephyrin clusters of WT VB neurones were replaced by those containing the alpha(1) subunit. Surprisingly, in alpha(1)(0/0) VB neurones the frequency of mIPSCs decreased between P12 and P27, because the alpha(2) subunit also disappeared from these cells. The loss of synaptic GABA(A) receptors led to a delayed disruption of gephyrin clusters. Despite these alterations, GABA-ergic terminals were preserved, perhaps maintaining tonic inhibition. These results demonstrate that maturation of synaptic and extrasynaptic GABA(A) receptors in VB follows a developmental programme independent of the alpha(1) subunit. Changes to synaptic GABA(A) receptor function and the increased expression of extrasynaptic GABA(A) receptors represent two distinct mechanisms for fine-tuning GABA-ergic control of thalamic relay neurone activity during development.


Asunto(s)
Neuronas/metabolismo , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo , Tálamo/crecimiento & desarrollo , Tálamo/metabolismo , Animales , Proteínas Portadoras/metabolismo , Electrofisiología , Femenino , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Subunidades de Proteína/metabolismo , Transmisión Sináptica/fisiología
12.
J Comp Neurol ; 495(4): 408-21, 2006 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-16485284

RESUMEN

Targeted deletion of the alpha1 subunit gene results in a profound loss of gamma-aminobutyric acid type A (GABA(A)) receptors in adult mouse brain but has only moderate behavioral consequences. Mutant mice exhibit several adaptations in GABA(A) receptor subunit expression, as measured by Western blotting. By using immunohistochemistry, we investigated here whether these adaptations serve to replace the missing alpha1 subunit or represent compensatory changes in neurons that normally express these subunits. We focused on cerebellum and thalamus and distinguished postsynaptic GABA(A) receptor clusters by their colocalization with gephyrin. In the molecular layer of the cerebellum, alpha1 subunit clusters colocalized with gephyrin disappeared from Purkinje cell dendrites of mutant mice, whereas alpha3 subunit/gephyrin clusters, presumably located on dendrites of Golgi interneurons, increased sevenfold, suggesting profound network reorganization in the absence of the alpha1 subunit. In thalamus, a prominent increase in alpha3 and alpha4 subunit immunoreactivity was evident, but without change in regional distribution. In the ventrobasal complex, which contains primarily postsynaptic alpha1- and extrasynaptic alpha4-GABA(A) receptors, the loss of alpha1 subunit was accompanied by disruption of gamma2 subunit and gephyrin clustering, in spite of the increased alpha4 subunit expression. However, in the reticular nucleus, which lacks alpha1-GABA(A) receptors in wild-type mice, postsynaptic alpha3/gamma2/gephyrin clusters were unaffected. These results demonstrate that adaptive responses in the brain of alpha1(0/0) mice involve reorganization of GABAergic circuits and not merely replacement of the missing alpha1 subunit by another receptor subtype. In addition, clustering of gephyrin at synaptic sites in cerebellum and thalamus appears to be dependent on expression of a GABA(A) receptor subtype localized postsynaptically.


Asunto(s)
Encéfalo/metabolismo , Inhibición Neural/fisiología , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo , Animales , Western Blotting , Proteínas Portadoras/metabolismo , Cerebelo/metabolismo , Inmunohistoquímica , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Receptores de GABA-A/genética , Tálamo/metabolismo
13.
Epilepsia ; 46(12): 1860-70, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16393151

RESUMEN

PURPOSE: gamma-Aminobutyric acid receptor (GABA(A)r) subunit beta3-deficient mice model Angelman syndrome by displaying impaired learning, abnormal EEG with interictal spikes and slowing, myoclonus, and convulsions. The beta3-subunit deficiency causes a failure of intrathalamic reticular nucleus inhibition, leading to abnormally synchronized thalamocortical oscillations. We postulated that this pathophysiology underlies the abnormal cortical EEG and triggers interictal spikes and seizures, but extrathalamic regions also contribute to interictal spikes and seizures, so that the EEG slowing should reveal an absence-like response profile, whereas spikes and seizures have dual responsiveness to absence and partial-seizure drugs. METHODS: Recording electrodes were implanted over the parietal cortices of wild-type, heterozygotes, and homozygous null mice. In each experiment, EEG was recorded for 45 min, either drug or vehicle administered, and EEG recorded for another 3 h. Each EEG was scored for slow-wave activity, interictal spikes, and seizures by a reader blinded to treatments. RESULTS: Interictal spiking and percentage of time in EEG slowing in heterozygotes were increased by the proabsence drug baclofen (GABA(B)-receptor agonist), whereas CGP 35348 (GABA(B)-receptor antagonist) had the opposite effect. The antiabsence drug ethosuximide markedly suppressed EEG slowing and interictal spiking in heterozygote and null mice. Broad-spectrum clonazepam and valproate were more effective on interictal spiking than on EEG slowing, and fosphenytoin suppressed only interictal spiking. CONCLUSIONS: The results suggest that this model of Angelman syndrome, although not expressing typical absence seizures, is characterized by hypersynchronous thalamocortical oscillations that possess absence-like pharmacologic responsiveness and promote EEG slowing, interictal spikes, and convulsive seizures.


Asunto(s)
Síndrome de Angelman/fisiopatología , Corteza Cerebral/fisiopatología , Electroencefalografía/efectos de los fármacos , Agonistas del GABA/farmacología , Antagonistas del GABA/farmacología , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/fisiología , Tálamo/fisiopatología , Síndrome de Angelman/tratamiento farmacológico , Síndrome de Angelman/metabolismo , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Baclofeno/farmacología , Corteza Cerebral/efectos de los fármacos , Modelos Animales de Enfermedad , Electrodos Implantados , Electroencefalografía/estadística & datos numéricos , Etosuximida/farmacología , Femenino , Humanos , Masculino , Ratones , Ratones Mutantes , Vías Nerviosas/fisiopatología , Compuestos Organofosforados/farmacología , Lóbulo Parietal/fisiopatología , Receptores de GABA-A/deficiencia , Tálamo/efectos de los fármacos
14.
J Neurosci ; 23(22): 8051-9, 2003 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-12954867

RESUMEN

Strychnine-sensitive glycine receptors (GlyRs) inhibit neurotransmission in the spinal cord and brainstem. To better define the function of this receptor in vivo, we constructed a point mutation that impairs receptor function in the alpha1-subunit and compared these knock-in mice to oscillator (spdot) mice lacking functional GlyR alpha1-subunits. Mutation of the serine residue at amino acid 267 to glutamine (alpha1S267Q) results in a GlyR with normal glycine potency but decreased maximal currents, as shown by electrophysiological recordings using Xenopus oocytes. In addition, single-channel recordings using human embryonic kidney 293 cells indicated profoundly altered properties of the mutated GlyR. We produced knock-in mice bearing the GlyR alpha1 S267Q mutation to assess the in vivo consequences of selectively decreasing GlyR efficacy. Chloride uptake into brain synaptoneurosomes from knock-in mice revealed decreased responses to maximally effective glycine concentrations, although wild-type levels of GlyR expression were observed using 3H-strychnine binding and immunoblotting. A profound increase in the acoustic startle response was observed in knock-in mice as well as a "limb clenching" phenotype. In contrast, no changes in coordination or pain perception were observed using the rotarod or hot-plate tests, and there was no change in GABA(A)-receptor-mediated chloride uptake. Homozygous S267Q knock-in mice, like homozygous spdot mice, exhibited seizures and died within 3 weeks of birth. In heterozygous spdot mice, both decreased 3H-strychnine binding and chloride flux were observed; however, neither enhanced acoustic startle responses nor limb clenching were seen. These data demonstrate that a dominant-negative point mutation in GlyR disrupting normal function can produce a more dramatic phenotype than the corresponding recessive null mutation, and provides a new animal model to evaluate GlyR function in vivo.


Asunto(s)
Fenotipo , Receptores de Glicina/genética , Estimulación Acústica , Sustitución de Aminoácidos , Animales , Conducta Animal/fisiología , Células Cultivadas , Cloruros/metabolismo , Marcación de Gen , Glicinérgicos/farmacología , Heterocigoto , Homocigoto , Humanos , Riñón/citología , Riñón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Datos de Secuencia Molecular , Actividad Motora/genética , Oocitos/metabolismo , Técnicas de Placa-Clamp , Receptores de Glicina/efectos de los fármacos , Reflejo de Sobresalto/genética , Reflejo de Sobresalto/fisiología , Estricnina/farmacología , Sinaptosomas/metabolismo , Xenopus
15.
J Neurophysiol ; 89(3): 1378-86, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12626617

RESUMEN

Robust GABA-mediated inhibitory postsynaptic currents (IPSCs) in neurons of the thalamic relay (TC) nuclei are important in sustaining oscillatory activity within thalamic and thalamocortical circuits. The biophysical properties and pharmacological sensitivities of these IPSCs both depend on the subunit combination of postsynaptic gamma-aminobutyric acid-A (GABA(A)) receptors. Recombinant GABA(A) receptors containing the delta subunit (heavily expressed in TC nuclei) have been shown to exhibit slowed desensitization rates and high affinity for GABA in heterologous expression systems. We tested whether the GABA(A)-mediated synaptic inhibition in TC neurons would be affected by loss of the delta subunit. Spontaneous and evoked IPSCs were recorded from neurons in the ventral basal complex (VB) of the thalamus from brain slices of wild-type (delta(+/+)) and homozygous delta subunit deficient mice (delta(-/-)). Spontaneous IPSCs (sIPSCs) from delta(-/-) mice had no significant differences in amplitude, duration, or frequency compared with their delta(+/+) counterparts. However, baseline noise (63% of control) and the relative contribution of the slow component to overall decay (79% of control) were significantly lower in delta(-/-) VB recordings. Evoked IPSCs (eIPSCs) in delta(-/-) neurons showed no difference in peak amplitude, but had an accelerated slow decay component (40- vs. 55-ms time constant). We further tested whether neurosteroid modulation of GABA(A) receptors was dependent on the presence of the delta subunit, as previously reported in recombinant systems. Pregnenolone sulfate (PS) significantly reduced eIPSC peak amplitude (-30%) and increased duration in delta(-/-), but not in delta(+/+) mice. sIPSCs were not affected in any neurons, delta(-/-) or delta(+/+). In contrast, 3-alpha,5-alpha-tetrahydrodeoxycorticosterone (THDOC) increased the durations of eIPSCs and sIPSCs in both delta(-/-) and delta(+/+) VB neurons. Our findings show that although the delta subunit confers a striking PS insensitivity to eIPSCs in VB neurons, it plays only a minor role in the synaptic inhibition of VB neurons. This suggests delta subunit containing GABA(A) receptors may be functionally limited to an extrasynaptic locus in VB neurons.


Asunto(s)
Desoxicorticosterona/análogos & derivados , Inhibición Neural/fisiología , Receptores de GABA-A/genética , Sinapsis/fisiología , Tálamo/fisiología , Ácido gamma-Aminobutírico/fisiología , Anestésicos/farmacología , Animales , Desoxicorticosterona/farmacología , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vías Nerviosas , Pregnenolona/farmacología , Receptores de GABA-A/metabolismo , Tálamo/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA