Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-33488743

RESUMEN

Diabetes is associated with the development of myocardial fibrosis, which is related to various cardiac diseases. Cafestol, one of the active ingredients in coffee, has been reported to exert biological effects. However, whether cafestol can ameliorate diabetes-induced cardiac fibrosis remains unknown. The aim of this study was to evaluate the effects of cafestol on cardiac fibrosis in high-glucose-treated cardiac fibroblasts and streptozocin- (STZ-) induced diabetic rats. Rat cardiac fibroblasts were cultured in high-glucose (25 mM) media in the absence or presence of cafestol, and the changes in collagen synthesis, transforming growth factor-ß1 (TGF-ß1) production, and related signaling molecules were assessed on the basis of 3H-proline incorporation, enzyme-linked immunosorbent assay, and western blotting. Cardiac fibroblasts exposed to high-glucose conditions exhibited increased collagen synthesis, TGF-ß1 production, and Smad2/3 phosphorylation, and these effects were mitigated by cafestol treatment. Furthermore, cafestol increased the translocation of nuclear factor erythroid 2-related factor 2 and increased the expression of heme oxygenase-1. The results of molecular docking analysis suggested a selective interaction of cafestol with Kelch-like ECH-associated protein 1. The rats with untreated STZ-induced diabetes exhibited considerable collagen accumulation, which was ameliorated by cafestol. Moreover, activities of catalase, superoxide dismutase, general matrix metalloproteinase, and reduced glutathione concentration were upregulated, whereas malondialdehyde level was downregulated by treatment with cafestol in rats with cardiac fibrosis. These findings highlight the effects of cafestol, which may be useful in treating diabetes-related cardiac fibrosis.

2.
Am J Chin Med ; 47(2): 337-350, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30871360

RESUMEN

Through population-based studies, associations have been found between coffee drinking and numerous health benefits, including a reduced risk of cardiovascular disease. Active ingredients in coffee have therefore received considerable attention from researchers. A wide variety of effects have been attributed to cafestol, one of the major compounds in coffee beans. Because cardiac hypertrophy is an independent risk factor for cardiovascular events, this study examined whether cafestol inhibits urotensin II (U-II)-induced cardiomyocyte hypertrophy. Neonatal rat cardiomyocytes were exposed only to U-II (1 nM) or to U-II (1 nM) following 12-h pretreatment with cafestol (1-10 µ M). Cafestol (3-10 µ M) pretreatment significantly inhibited U-II-induced cardiomyocyte hypertrophy with an accompanying decrease in U-II-induced reactive oxygen species (ROS) production. Cafestol also inhibited U-II-induced phosphorylation of redox-sensitive extracellular signal-regulated kinase (ERK) and epidermal growth factor receptor transactivation. In addition, cafestol pretreatment increased Src homology region 2 domains-containing phosphatase-2 (SHP-2) activity, suggesting that cafestol prevents ROS-induced SHP-2 inactivation. Moreover, nuclear factor erythroid-2-related factor 2 (Nrf2) translocation and heme oxygenase-1 (HO-1) expression were enhanced by cafestol. Addition of brusatol (a specific inhibitor of Nrf2) or Nrf2 siRNA significantly attenuated cafestol-mediated inhibitory effects on U-II-stimulated ROS production and cardiomyocyte hypertrophy. In summary, our data indicate that cafestol prevented U-II-induced cardiomycyte hypertrophy through Nrf2/HO-1 activation and inhibition of redox signaling, resulting in cardioprotective effects. These novel findings suggest that cafestol could be applied in pharmacological therapy for cardiac diseases.


Asunto(s)
Aumento de la Célula/efectos de los fármacos , Diterpenos/farmacología , Miocitos Cardíacos/patología , Factor 2 Relacionado con NF-E2/metabolismo , Urotensinas/efectos adversos , Urotensinas/antagonistas & inhibidores , Animales , Cardiomegalia/tratamiento farmacológico , Células Cultivadas , Depresión Química , Diterpenos/uso terapéutico , Receptores ErbB/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hemo-Oxigenasa 1/metabolismo , Fosforilación/efectos de los fármacos , Fitoterapia , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Activación Transcripcional/efectos de los fármacos
3.
Cytokine ; 108: 136-144, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29605763

RESUMEN

Antrodia camphorata mycelium is used in traditional Chinese medicine in Taiwan. The wild-type mycelium is rare and expensive, so a solid-state-cultured mycelium of A. camphorata (SCMAC) has been developed. Previous studies have found SCMAC to have anti-inflammatory effects. However, the immunomodulatory effects of SCMAC and of its active phytosterol compounds EK100 and 9A on asthma remain unknown. In this study, BALB/c mice were repeatedly exposed to Dermatogoides pteronyssinus (Der p) at 1-week intervals and were orally administered crude SCMAC extract before the Der p challenge. The mice were sacrificed 72 h after the last challenge to examine the airway remodeling, inflammation, and expression profiles of cytokines and various genes. Then, 30-µg/mL Der p-stimulated MH-S cells with 9A or EK100 were collected for real-time PCR analysis, and the effects of 9A and EK100 on macrophages were evaluated. The crude extract reduced Der p-induced airway hyperresponsiveness, total serum immunoglobulin E levels, and recruitment of inflammatory cells to the bronchoalveolar lavage fluid through cytokine downregulation and Th1/Th2/Th17 response modulation. Additionally, 9A and EK100 inhibited IL-1ß and IL-6 expression in alveolar macrophages. These results indicate that the pharmacologically active compounds in a crude SCMAC extract exert synergistic effects on multiple targets to relieve asthma symptoms.


Asunto(s)
Corticoesteroides/farmacología , Antrodia/química , Proteínas Fúngicas/farmacología , Macrófagos/efectos de los fármacos , Hipersensibilidad Respiratoria/tratamiento farmacológico , Animales , Antiinflamatorios/farmacología , Asma/tratamiento farmacológico , Modelos Animales de Enfermedad , Inflamación , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Micelio/química , Reacción en Cadena en Tiempo Real de la Polimerasa , Organismos Libres de Patógenos Específicos
4.
Am J Chin Med ; 44(2): 377-88, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27080946

RESUMEN

Tanshinone IIA is the main effective component of Salvia miltiorrhiza, known as "Danshen," which has been used in many therapeutic remedies in traditional Chinese medicine. However, the direct effects of tanshinone IIA on vascular endothelial cells have not yet been fully described. In the present study, we demonstrated that tanshinone IIA increased heme oxygenase-1 (HO-1) expression in human umbilical vein endothelial cells. Western blot analyses and experiments with specific inhibitors indicated tanshinone IIA enhanced HO-1 expression through the activation of phosphoinositide 3-kinase (PI3K)/Akt and the subsequent induction of nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation. In addition, tanshinone IIA inhibited cyclic strain induced interleukin-8 (IL-8) expression. HO-1 silencing significantly abrogated the repressive effects of tanshinone IIA on strain-induced IL-8 expression, which suggests HO-1 has a role in mediating the effects of tanshinone IIA. This study reports for the first time that tanshinone IIA inhibits cyclic strain-induced IL-8 expression via the induction of HO-1 in endothelial cells, providing valuable new insight into the molecular pathways that may contribute to the effects of tanshinone IIA.


Asunto(s)
Benzofuranos/farmacología , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Células Endoteliales de la Vena Umbilical Humana/enzimología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Salvia miltiorrhiza/química , Benzofuranos/aislamiento & purificación , Inducción Enzimática/efectos de los fármacos , Silenciador del Gen , Hemo-Oxigenasa 1/fisiología , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-23533467

RESUMEN

Urine therapy has been commonly practiced in ancient civilizations including those of India, China, and Greece. The traditional Chinese medicine KWLL, the precipitation of human urine, has been used in China to alleviate the symptoms of asthma for thousands of years. However, the mechanism of action by which KWLL exerts its immunotherapy is unclear. This study attempted to elucidate the pharmacology of KWLL in mice that had been challenged recurrently by Dermatophagoides pteronyssinus (Der p). BALB/c mice were orally administered KWLL (1 g/kg) before an intratracheal (i.t.) challenge of Der p. Allergic airway inflammation and remodeling were provoked by repetitive Der p (50 µ g/mice) challenges six times at 1 wk intervals. Airway hypersensitivity, histological lung characteristics, and the expression profiles of cytokines and various genes were assessed. KWLL reduced Der p-induced airway hyperresponsiveness and inhibited eosinophil infiltration by downregulating the protein expression of IL-5 in bronchoalveolar lavage fluid (BALF). It also inhibited neutrophil recruitment by downregulating IL-17A in BALF. KWLL effectively diminished inflammatory cells, goblet cell hyperplasia, and mRNA expression of IL-6 and IL-17A in the lung. The reduction by KWLL of airway inflammatory and hyperresponsiveness in allergic asthmatic mice was mediated via immunomodulation of IL-5, IL-6, and IL-17A.

6.
Am J Chin Med ; 40(6): 1307-19, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23227799

RESUMEN

The injury of endothelial cell is the critical event of vascular disease. In endothelial cell, oxidative stress is regarded as critical to pathogenic factors in endothelial cell injury and apoptosis. Tanshinone IIA is the main effective component of Salvia miltiorrhiza known as "Danshen" in traditional Chinese medicine for treating cardiovascular disorders, but the mechanism by which it exerts the protective effect is not well established. The present study was designed to test the hypothesis that tanshinone IIA can inhibit hydrogen peroxide ( H(2)O(2) )-induced injury and unravel its intracellular mechanism in human umbilical vein endothelial cells (HUVECs). In this study, HUVECs were treated with tanshinone IIA in the presence/absence of H(2)O(2) . The protective effects of tanshinone IIA against H(2)O(2) were evaluated. Our results show that HUVECs incubated with 200 µM H(2)O(2) had significantly decreased the viability of endothelial cells, which was accompanied with apparent cell apoptosis, the activation of caspase-3 and the upregulation of p53 expression, which was known to play a key role in H(2)O(2) -induced cell apoptosis. However, pretreatment with tanshinone IIA (3-10 µM) resulted in a significant resistance to H(2)O(2) -induced apoptosis. In addition, pretreatment with tanshinone IIA decreased the activity of caspase-3 and p53 expression. Tanshinone IIA also induced activating transcription factor (ATF) 3 expression; while knockdown of ATF-3 with ATF-3 siRNAsignificantly reduced tanshinone IIA's protective effect. In conclusion, the present study shows that tanshinone IIA can protect endothelial cells against oxidative injury induced by H(2)O(2) , suggesting that this compound may constitute a promising intervention against cardiovascular disorders and ATF-3 may play an important role in this process.


Asunto(s)
Abietanos/farmacología , Endotelio Vascular/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Venas Umbilicales/efectos de los fármacos , Secuencia de Bases , Western Blotting , Células Cultivadas , Cartilla de ADN , Endotelio Vascular/citología , Citometría de Flujo , Humanos , Etiquetado Corte-Fin in Situ , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Venas Umbilicales/citología
7.
Int J Cardiol ; 157(2): 174-9, 2012 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-21190747

RESUMEN

BACKGROUND: Doxorubicin, one of the original anthracyclines, remains among the most effective anticancer drugs ever developed. Clinical use of doxorubicin is, however, greatly limited by its serious adverse cardiac effects that may ultimately lead to cardiomyopathy and heart failure. Tanshinone IIA is the main effective component of Salvia miltiorrhiza known as 'Danshen' in traditional Chinese medicine for treating cardiovascular disorders. The objective of this study was set to evaluate the protective effect of tanshinone IIA on doxorubicin-induced cardiomyocyte apoptosis, and to explore its intracellular mechanism(s). METHODS: Primary cultured neonatal rat cardiomyocytes were treated with the vehicle, doxorubicin (1 µM), tanshinone IIA (0.1, 0.3, 1 and 3 µM), or tanshinone IIA plus doxorubicin. RESULTS: We found that tanshinone IIA (1 and 3 µM) inhibited doxorubicin-induced reactive oxygen species generation, reduced the quantity of cleaved caspase-3 and cytosol cytochrome c, and increased BcL-x(L) expression, resulting in protecting cardiomyocytes from doxorubicin-induced apoptosis. In addition, Akt phosphorylation was enhanced by tanshinone IIA treatment in cardiomyocytes. The wortmannin (100 nM), LY294002 (10 nM), and siRNA transfection for Akt significantly reduced tanshinone IIA-induced protective effect. CONCLUSIONS: These findings suggest that tanshinone IIA protects cardiomyocytes from doxorubicin-induced apoptosis in part through Akt-signaling pathways, which may potentially protect the heart from the severe toxicity of doxorubicin.


Asunto(s)
Abietanos/farmacología , Apoptosis/efectos de los fármacos , Doxorrubicina/toxicidad , Medicamentos Herbarios Chinos/farmacología , Miocitos Cardíacos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/fisiología , Animales , Animales Recién Nacidos , Apoptosis/fisiología , Cardiotónicos/farmacología , Células Cultivadas , Doxorrubicina/antagonistas & inhibidores , Miocitos Cardíacos/enzimología , Ratas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
8.
Clin Exp Pharmacol Physiol ; 39(1): 63-8, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22032308

RESUMEN

1. Tanshinone IIA, one of the active components of the Radix of Salvia miltiorrhiza, is used in traditional Chinese medicine to treat cardiovascular diseases. However, the intracellular mechanism of action of tanshinone IIA remain to be determined. The aims of the present study were to test the hypothesis that tanshinone IIA alters strain-induced endothelin (ET)-1 expression and nitric oxide (NO) production, as well as to identify the putative signalling pathways involved, in human umbilical vein endothelial cells (HUVEC). 2. Cultured HUVEC were exposed to cyclic strain in the presence of 1-10 µmol/L tanshinone IIA. Expression of ET-1 was examined by reverse transcription-polymerase chain reaction and ELISA. Phosphorylation of endothelial NO synthase (eNOS) and activating transcription factor (ATF) 3 was assessed by western blot analysis. 3. Tanshinone IIA (3 and 10 µmol/L) inhibited strain-induced ET-1 expression. In contrast, NO production, eNOS phosphorylation and ATF3 expression were enhanced by tanshinone IIA. The eNOS inhibitor N(G) -nitro-L-arginine methyl ester (l-NAME; 100 µmol/L), the phosphatidylinositol 3-kinase inhibitor LY294002 (5 µmol/L) and the soluble guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ; 10 µmol/L) inhibited tanshinone IIA-induced increases in ATF3 expression. Moreover, treatment of HUVEC with either an NO donor (3,3-bis [aminoethyl]-1-hydroxy-2-oxo-1-triazene; 500 µmol/L) or an ATF3 activator (carbobenzoxy-L-leucyl-L-leucyl-L-leucinal; 5 µmol/L) resulted in the repression of strain-induced ET-1 expression. The inhibitory effect of tanshinone IIA on strain-induced ET-1 expression was significantly attenuated by l-NAME, ODQ and the transfection of small interfering RNA for ATF3. 4. In conclusion, tanshinone IIA inhibits strain-induced ET-1 expression by increasing NO and upregulating ATF3 in HUVEC. The present study provides important new insights into the molecular pathways that may contribute to the beneficial effects of tanshinone IIA in the cardiovascular system.


Asunto(s)
Abietanos/farmacología , Enfermedades Cardiovasculares/prevención & control , Microambiente Celular , Regulación hacia Abajo/efectos de los fármacos , Endotelina-1/metabolismo , Endotelio Vascular/efectos de los fármacos , Factor de Transcripción Activador 3/agonistas , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Células Cultivadas , Endotelina-1/genética , Endotelio Vascular/metabolismo , Inhibidores Enzimáticos/farmacología , Guanilato Ciclasa/antagonistas & inhibidores , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Guanilil Ciclasa Soluble
9.
Mol Med Rep ; 5(1): 142-7, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22002431

RESUMEN

Alzheimer's disease (AD) is an age-related neurodegenerative disease, affecting over 20 million people worldwide. Until recently, two major hypotheses were proposed regarding the molecular mechanism of pathogenesis: the cholinergic hypothesis and the amyloid cascade hypothesis. At present, acetylcholinesterase inhibitors are the most effective therapy for AD. Most pharmacological research has focused on the ability of acetylcholinesterase to alleviate cholinergic deficit and improve neurotransmission. Coptidis rhizoma and its isolated alkaloids are reported to possess a variety of activities, including neuroprotective and antioxidant effects. However, as yet no theoretical analysis exists to support this hypothesis. To examine this theory, we applied a computational pharmaceutical analysis to reveal that Chinese medicine Coptidis rhizoma alkaloids have much higher activities than Donepezil (commercial name is Aricept) by docking and scoring.


Asunto(s)
Alcaloides/química , Enfermedad de Alzheimer , Inhibidores de la Colinesterasa/química , Coptis/química , Medicamentos Herbarios Chinos/farmacología , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Simulación por Computador , Humanos , Datos de Secuencia Molecular , Rizoma/química , Alineación de Secuencia , Programas Informáticos
10.
Am J Chin Med ; 39(2): 381-94, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21476213

RESUMEN

Tanshinone IIA extracted from danshen, a popular medicinal herb used in traditional Chinese medicine, exhibits cardio-protective effects. However, the mechanism of its cardioprotective effect is not well established. The aims of this study were to examine whether tanshinone IIA may alter angiotensin II (Ang II)-induced cell proliferation and to identify the putative underlying signaling pathways in rat cardiac fibroblasts. Cultured rat cardiac fibroblasts were pre-treated with tanshinone IIA and stimulated with Ang II, cell proliferation and endothelin-1 (ET-1) expression were examined. The effect of tanshinone IIA on Ang II-induced reactive oxygen species (ROS) formation, and extracellular signal-regulated kinase (ERK) phosphorylation were also examined. In addition, the effect of tanshinone IIA on nitric oxide (NO) production, and endothelial nitric oxide synthase (eNOS) phosphorylation were tested to elucidate the intracellular mechanism. The increased cell proliferation and ET-1 expression by Ang II (100 nM) were partially inhibited by tanshinone IIA. Tanshinone IIA also inhibited Ang II-increased ROS formation, and ERK phosphorylation. In addition, tanshinone IIA was found to increase the NO generation, and eNOS phosphorylation. N(G)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NOS, and the short interfering RNA transfection for eNOS markedly attenuated the inhibitory effect of tanshinone IIA on Ang II-induced cell proliferation. The results suggest that tanshinone IIA prevents cardiac fibroblast proliferation by interfering with the generation of ROS and involves the activation of the eNOS-NO pathway.


Asunto(s)
Abietanos/farmacología , Angiotensina II/antagonistas & inhibidores , Antioxidantes/farmacología , Proliferación Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Miocardio/citología , Miofibroblastos/efectos de los fármacos , Angiotensina II/metabolismo , Animales , Células Cultivadas , Medicamentos Herbarios Chinos/química , Endotelina-1/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Corazón/efectos de los fármacos , Miocardio/metabolismo , Miocardio/patología , Miofibroblastos/metabolismo , Miofibroblastos/patología , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación , ARN Interferente Pequeño/farmacología , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Salvia miltiorrhiza/química , Transducción de Señal/efectos de los fármacos , Transfección
11.
Acta Pharmacol Sin ; 31(12): 1569-75, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21102479

RESUMEN

AIM: to examine the effects of tanshinone IIA, the main effective component of Salvia miltiorrhiza (known as 'Danshen' in traditional Chinese medicine) on angiotensin II (Ang II)-mediated cardiomyocyte apoptosis. METHODS: rat neonatal cardiomyocytes were primarily cultured with Ang II or Ang II plus tanshinone IIA. Myocyte apoptosis was evaluated by caspase-3 activity and DNA strand break level with TdT-mediated dUTP nick-end labeling (TUNEL) staining. Western blot analysis was employed to determine the related protein expression and flow cytometry assay was used to determine the TUNEL positive cells and the intracellular reactive oxygen species (ROS) production. SiRNA targeted to Akt was used. RESULTS: ang II (0.1 micromol/L) remarkably increased caspase-3 activity, TUNEL positive cells, and cleaved caspase-3 and cytochrome c expression, but reduced Bcl-X(L) expression. These effects were effectively antagonized by pretreatment with tanshione IIA (1-3 micromol/L). Tanshinone IIA had no effect on basal ROS level, while attenuated the ROS production by Ang II. Interestingly, tanshione IIA significantly increased the phosphorylated Akt level, which was countered by the PI3K antagonist wortmannin or LY294002. Knockdown of Akt with Akt siRNA significantly reduced Akt protein levels and tanshinone IIA protective effect. CONCLUSION: tanshinone IIA prevents Ang II-induced apoptosis, thereby suggesting that tanshinone IIA may be used for the prevention of the cardiac remodeling process.


Asunto(s)
Angiotensina II/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Fenantrenos/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Abietanos , Animales , Animales Recién Nacidos , Caspasa 3/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citocromos c/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Salvia miltiorrhiza
12.
Am J Chin Med ; 35(6): 1021-35, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18186588

RESUMEN

Tetramethylpyrazine (TMP) is the major component extracted from the Chinese herb, Chuanxiong, which is widely used in China for the treatment of cardiovascular problems. The aims of this study were to examine whether TMP may alter angiotenisn II (Ang II)-induced proliferation and to identify the putative underlying signaling pathways in rat aortic smooth muscle cells. Cultured rat aortic smooth muscle cells were preincubated with TMP and then stimulated with Ang II, [3H]-thymidine incorporation and the ET-1 expression was examined. Ang II increased DNA synthesis which was inhibited by TMP (1-100 microM). TMP inhibited the Ang II-induced ET-1 mRNA levels and ET-1 secretion. TMP also inhibited Ang II-increased NAD(P)H oxidase activity, intracellular reactive oxygen species (ROS) levels, and the ERK phosphorylation. Furthermore, TMP and antioxidants such as Trolox and diphenylene iodonium decreased Ang II-induced ERK phosphorylation, and activator protein-1 reporter activity. In summary, we demonstrate for the first time that TMP inhibits Ang II-induced proliferation and ET-1, partially by interfering with the ERK pathway via attenuation of Ang II-increased NAD(P)H oxidase and ROS generation. Thus, this study delivers important new insight in the molecular pathways that may contribute to the proposed beneficial effects of TMP in cardiovascular disease.


Asunto(s)
Angiotensina II/farmacología , Proliferación Celular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , NADPH Oxidasas/metabolismo , Pirazinas/farmacología , Vasodilatadores/farmacología , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/metabolismo , Aorta Torácica/patología , Células Cultivadas , ADN/metabolismo , Endotelina-1/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Masculino , Músculo Liso Vascular/efectos de los fármacos , NADPH Oxidasas/efectos de los fármacos , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Transcripción AP-1/metabolismo
13.
Planta Med ; 72(14): 1318-21, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17054046

RESUMEN

Baicalein is a flavonoid extracted from the root of Scutellaria baicalensis Georgi, a medicinal plant traditionally used in Oriental medicine. Among its biological activities, baicalein has been reported to exhibit antioxidant effects. Endothelin-1 (ET-1) is a potent vasopressor synthesized by endothelial cells both in culture and in vivo. The aims of this study were to test the hypothesis that baicalein may alter strain-induced ET-1 secretion and to identify the putative underlying signaling pathways in endothelial cells. We show that baicalein inhibited strain-induced ET-1 secretion. Baicalein also inhibited strain-increased reactive oxygen species (ROS) formation and the extracellular signal-regulated kinases (ERK) phosphorylation. Using a reporter gene assay, baicalein and the antioxidant Trolox also attenuated the strain-stimulated activator protein-1 (AP-1) reporter activity. We conclude that baicalein inhibits strain-induced ET-1 gene expression, partially by interfering with the ERK pathway via attenuation of ROS formation. These results highlight the molecular pathways that may contribute to the beneficial effects of baicalein in the vascular system such as stroke prevention.


Asunto(s)
Antioxidantes/farmacología , Endotelina-1/biosíntesis , Flavanonas/farmacología , Fitoterapia , Extractos Vegetales/farmacología , Scutellaria baicalensis , Antioxidantes/administración & dosificación , Antioxidantes/uso terapéutico , Relación Dosis-Respuesta a Droga , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Flavanonas/administración & dosificación , Flavanonas/uso terapéutico , Humanos , Extractos Vegetales/administración & dosificación , Extractos Vegetales/uso terapéutico , Raíces de Plantas , Especies Reactivas de Oxígeno/metabolismo , Estrés Mecánico , Venas Umbilicales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA