Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 123: 155236, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38016383

RESUMEN

BACKGROUND: Amauroderma rugosum (Blume & T. Nees) Torrend (Ganodermataceae) is an edible mushroom with a wide range of medicinal values. Our previous publication demonstrated the therapeutic effects of the water extract of A. rugosum (WEA) against gastric ulcers. However, the protective effects of the ethanol extract of A. rugosum (EEA) on gastric mucosa and its major active constituents have not yet been elucidated. PURPOSE: This study aims to evaluate the gastroprotective effects and underlying mechanisms of EEA and its fat-soluble constituent, ergosterol, in acute gastric ulcers. STUDY DESIGN AND METHOD: SD rats were pre-treated with EEA (50, 100, and 200 mg/kg) or ergosterol (5, 10, and 20 mg/kg), and acute gastric ulcer models were constructed using ethanol, gastric mucus secretion inhibitor (indomethacin) or pyloric-ligation. The gastric ulcer area, histological structure alterations (H&E staining), and mucus secretion (AB-PAS staining) were recorded. Additionally, Q-PCR, western blotting, immunohistochemistry, ELISA, molecular docking, molecular dynamics simulations, MM-GBSA analysis, and surface plasmon resonance assay (SPR) were used to investigate the underlying mechanisms of the gastroprotective effect. RESULT: Compared with WEA, which primarily exerts its anti-ulcer effects by inhibiting inflammation, EEA containing fat-soluble molecules showed more potent gastroprotective effect through the promotion of gastric mucus secretion, as the anti-ulcer activity was partly blocked by indomethacin. Meanwhile, EEA exhibited anti-inflammatory effects by suppressing the production of IL-6, IL-1ß, TNF-α, and NO, thereby inhibiting the MAPK pathway. Significantly, ergosterol (20 mg/kg), the bioactive water-insoluble compound in EEA, exhibited a gastroprotective effect comparable to that of lansoprazole (30 mg/kg). The promotion of gastric mucus secretion contributed to the effects of ergosterol, as indomethacin can completely block it. The upregulations of COX1-PGE2 and C-fos, an activator protein 1 (AP-1) transcription factor, were observed after the ergosterol treatment. Ergosterol acted as an LXRß agonist via van der Waals binding and stabilizing the LXRß protein without compromising its flexibility, thereby inducing the upregulation of AP-1 and COX-1. CONCLUSION: EEA and its primary bioactive compound, ergosterol, exert anti-ulcer effects by promoting gastric mucus secretion through the LXRß/C-fos/COX-1/PGE2 pathway.


Asunto(s)
Antiulcerosos , Polyporaceae , Úlcera Gástrica , Ratas , Animales , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Etanol/farmacología , Ratas Wistar , Dinoprostona/metabolismo , Simulación del Acoplamiento Molecular , Factor de Transcripción AP-1/metabolismo , Ratas Sprague-Dawley , Indometacina/farmacología , Moco , Extractos Vegetales/química , Mucosa Gástrica , Agua , Antiulcerosos/farmacología , Antiulcerosos/uso terapéutico
2.
Artículo en Inglés | MEDLINE | ID: mdl-35463075

RESUMEN

Background: Li Chang decoction (LCD), a Chinese medicine formula, is commonly used to treat ulcerative colitis (UC) in clinics. Purpose: This study aimed to identify the major components in LCD and its prototype and metabolic components in rat biological samples. Methods: The chemical constituents in LCD were identified by establishing a reliable ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF/MS) method. Afterwards, the rats were orally administered with LCD, and the biological samples (plasma, urine, and feces) were collected for further analyzing the effective compounds in the treatment of UC. Result: A total of 104 compounds were discriminated in LCD, including 26 flavonoids, 20 organic acids, 20 saponins, 8 amino acids, 5 oligosaccharides, 5 tannins, 3 lignans, 2 alkaloids, and 15 others (nucleosides, glycosides, esters, etc.). About 50 prototype and 94 metabolic components of LCD were identified in biological samples. In total, 29 prototype components and 22 metabolic types were detected in plasma. About 27 prototypes and 96 metabolites were discriminated in urine, and 34 prototypes and 18 metabolites were identified in feces. Conclusion: The flavonoids, organic acids, and saponins were the major compounds of LCD, and this study promotes the further pharmacokinetic and pharmacological evaluation of LCD.

3.
J Cell Physiol ; 234(4): 3775-3789, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30256386

RESUMEN

Heatstroke is a devastating condition that is characterized by severe hyperthermia and central nervous system dysfunction. However, the mechanism of thermoregulatory center dysfunction of the hypothalamus in heatstroke is unclear. In this study, we established a heatstroke mouse model and a heat-stressed neuronal cellular model on the pheochromocytoma-12 (PC12) cell line. These models revealed that HS promoted obvious neuronal injury in the hypothalamus, with high pathological scores. In addition, PC12 cell apoptosis was evident by decreased cell viability, increased caspase-3 activity, and high apoptosis rates. Furthermore, 14 differentially expressed proteins in the hypothalamus were analyzed by fluorescence two-dimensional difference gel electrophoresis and identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Expression changes in hippocalcin (HPAC), a downregulated neuron-specific calcium-binding protein, were confirmed in the hypothalamus of the heatstroke mice and heat-stressed PC12 cells by immunochemistry and western blot. Moreover, HPAC overexpression and HPAC-targeted small interfering RNA experiments revealed that HPAC functioned as an antiapoptotic protein in heat-stressed PC12 cells and hypothalamic injury. Lastly, ulinastatin (UTI), a cell-protective drug that is clinically used to treat patients with heatstroke, was used in vitro and in vivo to confirm the role of HPAC; UTI inhibited heat stress (HS)-induced downregulation of HPAC expression, protected hypothalamic neurons and PC12 cells from HS-induced apoptosis and increased heat tolerance in the heatstroke animals. In summary, our study has uncovered and demonstrated the protective role of HPAC in heatstroke-induced hypothalamic injury in mice.


Asunto(s)
Apoptosis , Encefalopatías/metabolismo , Golpe de Calor/metabolismo , Hipocalcina/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Proteómica , Animales , Apoptosis/efectos de los fármacos , Encefalopatías/etiología , Encefalopatías/patología , Encefalopatías/prevención & control , Modelos Animales de Enfermedad , Glicoproteínas/farmacología , Golpe de Calor/complicaciones , Golpe de Calor/tratamiento farmacológico , Hipocalcina/genética , Hipotálamo/efectos de los fármacos , Hipotálamo/patología , Masculino , Ratones Endogámicos BALB C , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Células PC12 , Proteómica/métodos , Ratas , Transducción de Señal , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Electroforesis Bidimensional Diferencial en Gel
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA