Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 45(22): 5511-5517, 2020 Nov.
Artículo en Chino | MEDLINE | ID: mdl-33350213

RESUMEN

Evaporative light scattering detector(ELSD) and charged aerosol detector(CAD) methods were established in this study for the content determination of four kinds of sugars in Zhusheyong Yiqi Fumai(YQFM), and the factors affecting the accuracy of CAD methods were discussed. HPLC-ELSD chromatographic separation was performed on a Shodex Asahipak NH2 P-50 column with acetonitrile-water(75∶25)as the mobile phase, with a flow rate of 0.8 mL·min~(-1), drift tube temperature of 80 ℃. The analysis by HPLC-CAD was performed on the same column with acetonitrile-water as mobile phase for gradient elution, with a flow rate of 0.8 mL·min~(-1), a neb temperature of 45 ℃, and power function(PF) of 1.3. The samples of YQFM were detected by ELSD and CAD respectively. It was found that YQFM was composed of fructose, glucose, sucrose and maltose. The linear relationship of the two methods was good, and the recoveries, reproducibility and stability of these four kinds of sugars measured by the two methods satisfied the requirements of methodology. Both CAD and ELSD detectors were accurate and reliable in detecting saccharides components in YQFM. In addition, it was revealed in this study for the first time that the PF parameter of CAD had an important influence on the accuracy of sugar determination and acted as the key parameter of CAD method. It was also found that for CAD, a non-linear detector, there was no significant difference between the results of linear regression and logarithmic regression.


Asunto(s)
Carbohidratos , Azúcares , Aerosoles , Cromatografía Líquida de Alta Presión , Luz , Reproducibilidad de los Resultados , Dispersión de Radiación
2.
Artículo en Chino | WPRIM | ID: wpr-335764

RESUMEN

To establish an on-line monitoring method for extraction process of Schisandrae Chinensis Fructus, the formula medicinal material of Yiqi Fumai lyophilized injection by combining near infrared spectroscopy with multi-variable data analysis technology. The multivariate statistical process control (MSPC) model was established based on 5 normal batches in production and 2 test batches were monitored by PC scores, DModX and Hotelling T2 control charts. The results showed that MSPC model had a good monitoring ability for the extraction process. The application of the MSPC model to actual production process could effectively achieve on-line monitoring for extraction process of Schisandrae Chinensis Fructus, and can reflect the change of material properties in the production process in real time. This established process monitoring method could provide reference for the application of process analysis technology in the process quality control of traditional Chinese medicine injections.

3.
Artículo en Chino | WPRIM | ID: wpr-307119

RESUMEN

Currently, near infrared spectroscopy (NIRS) has been considered as an efficient tool for achieving process analytical technology(PAT) in the manufacture of traditional Chinese medicine (TCM) products. In this article, the NIRS based process analytical system for the production of salvianolic acid for injection was introduced. The design of the process analytical system was described in detail, including the selection of monitored processes and testing mode, and potential risks that should be avoided. Moreover, the development of relative technologies was also presented, which contained the establishment of the monitoring methods for the elution of polyamide resin and macroporous resin chromatography processes, as well as the rapid analysis method for finished products. Based on author's experience of research and work, several issues in the application of NIRS to the process monitoring and control in TCM production were then raised, and some potential solutions were also discussed. The issues include building the technical team for process analytical system, the design of the process analytical system in the manufacture of TCM products, standardization of the NIRS-based analytical methods, and improving the management of process analytical system. Finally, the prospect for the application of NIRS in the TCM industry was put forward.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA