Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37047157

RESUMEN

5-aminolevulinic acid (ALA) is used for tumor-targeting phototherapy because it is converted to protoporphyrin IX (PPIX) upon excitation and induces phototoxicity. However, the effect of ALA on malignant cells under unexcited conditions is unclear. This information is essential when administering ALA systemically. We used sarcoma cell lines that usually arise deep in the body and are rarely exposed to light to examine the effects of ALA treatment under light (daylight lamp irradiation) and dark (dark room) conditions. ALA-treated human SW872 liposarcoma cells and human MG63 osteosarcoma cells cultured under light exhibited growth suppression and increased oxidative stress, while cells cultured in the dark showed no change. However, sphere-forming ability increased in the dark, and the expression of stem-cell-related genes was induced in dark, but not light, conditions. ALA administration increased heme oxygenase 1 (HO-1) expression in both cell types; when carbon monoxide (CO), a metabolite of HO-1, was administered to sarcoma cells via carbon-monoxide-releasing molecule 2 (CORM2), it enhanced sphere-forming ability. We also compared the concentration of biliverdin (BVD) (a co-product of HO-1 activity alongside CO) with sphere-forming ability when HO-1 activity was inhibited using ZnPPIX in the dark. Both cell types showed a peak in sphere-forming ability at 60-80 µM BVD. Furthermore, a cell death inhibitor assay revealed that the HO-1-induced suppression of sphere formation was rescued by apoptosis or ferroptosis inhibitors. These findings suggest that in the absence of excitation, ALA promotes HO-1 expression and enhances the stemness of sarcoma cells, although excessive HO-1 upregulation induces apoptosis and ferroptosis. Our data indicate that systemic ALA administration induces both enhanced stemness and cell death in malignant cells located in dark environments deep in the body and highlight the need to pay attention to drug delivery and ALA concentrations during phototherapy.


Asunto(s)
Ácido Aminolevulínico , Sarcoma , Humanos , Línea Celular , Ácido Aminolevulínico/farmacología , Ácido Aminolevulínico/uso terapéutico , Apoptosis , Muerte Celular , Sarcoma/tratamiento farmacológico , Hemo-Oxigenasa 1/metabolismo , Protoporfirinas/farmacología
2.
J Pediatr Hematol Oncol ; 41(2): 112-117, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30688829

RESUMEN

Few studies have examined the relationship between functional outcome and sociooccupational or psychological status in adolescent and young adults (AYA) generation and childhood sarcoma patients. We retrospectively analyzed clinical (prognostic and functional) and sociooccupational outcomes in 50 patients; 22 children aged under 14 years and 28 AYAs generation (15 to 29 y). There were 35 cases of bone sarcomas and 15 of soft tissue sarcomas. Limb-sparing surgery was performed in 30 of 37 extremity cases. The most prevalent problems among patients were as follows: limited activities; drop-out or delayed studies among high school and college students; limitation in job searching; and changes in social relationships. These problems were unaffected by limb-sparing. Regression analysis between functional and sociooccupational disability showed that the correlation coefficient was significant (P=0.005) in all limb-salvaged patients, but there was no significant correlation among osteosarcoma patients (P=0.07). These findings suggest that quality of life is a multidimensional measure: it depends on physical status, spiritual health, and social well-being of both patients and family members. To overcome the disadvantages of this type of disease, it is essential to provide comprehensive care at the earliest convenience using multidimensional approaches.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Neoplasias de los Tejidos Blandos , Adolescente , Adulto , Neoplasias Óseas/epidemiología , Neoplasias Óseas/fisiopatología , Neoplasias Óseas/cirugía , Niño , Preescolar , Humanos , Masculino , Osteosarcoma/epidemiología , Osteosarcoma/fisiopatología , Osteosarcoma/cirugía , Estudios Retrospectivos , Factores Socioeconómicos , Neoplasias de los Tejidos Blandos/epidemiología , Neoplasias de los Tejidos Blandos/fisiopatología , Neoplasias de los Tejidos Blandos/cirugía
3.
Semin Cancer Biol ; 35 Suppl: S151-S184, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25951989

RESUMEN

Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes.


Asunto(s)
Antineoplásicos/uso terapéutico , Inflamación/tratamiento farmacológico , Proteínas de Neoplasias/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Transformación Celular Neoplásica/efectos de los fármacos , Heterogeneidad Genética/efectos de los fármacos , Humanos , Inflamación/genética , Inflamación/patología , Terapia Molecular Dirigida , Neoplasias/genética , Neoplasias/patología , Transducción de Señal/efectos de los fármacos
4.
Semin Cancer Biol ; 35 Suppl: S5-S24, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25869442

RESUMEN

Genomic instability can initiate cancer, augment progression, and influence the overall prognosis of the affected patient. Genomic instability arises from many different pathways, such as telomere damage, centrosome amplification, epigenetic modifications, and DNA damage from endogenous and exogenous sources, and can be perpetuating, or limiting, through the induction of mutations or aneuploidy, both enabling and catastrophic. Many cancer treatments induce DNA damage to impair cell division on a global scale but it is accepted that personalized treatments, those that are tailored to the particular patient and type of cancer, must also be developed. In this review, we detail the mechanisms from which genomic instability arises and can lead to cancer, as well as treatments and measures that prevent genomic instability or take advantage of the cellular defects caused by genomic instability. In particular, we identify and discuss five priority targets against genomic instability: (1) prevention of DNA damage; (2) enhancement of DNA repair; (3) targeting deficient DNA repair; (4) impairing centrosome clustering; and, (5) inhibition of telomerase activity. Moreover, we highlight vitamin D and B, selenium, carotenoids, PARP inhibitors, resveratrol, and isothiocyanates as priority approaches against genomic instability. The prioritized target sites and approaches were cross validated to identify potential synergistic effects on a number of important areas of cancer biology.


Asunto(s)
Inestabilidad Genómica/efectos de los fármacos , Neoplasias/dietoterapia , Neoplasias/genética , Centrosoma/metabolismo , Daño del ADN/genética , Reparación del ADN/genética , Dieta , Inestabilidad Genómica/genética , Humanos , Neoplasias/patología , Pronóstico , Telomerasa/antagonistas & inhibidores , Telomerasa/genética
5.
Semin Cancer Biol ; 35 Suppl: S199-S223, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25865775

RESUMEN

Cancer arises in the context of an in vivo tumor microenvironment. This microenvironment is both a cause and consequence of tumorigenesis. Tumor and host cells co-evolve dynamically through indirect and direct cellular interactions, eliciting multiscale effects on many biological programs, including cellular proliferation, growth, and metabolism, as well as angiogenesis and hypoxia and innate and adaptive immunity. Here we highlight specific biological processes that could be exploited as targets for the prevention and therapy of cancer. Specifically, we describe how inhibition of targets such as cholesterol synthesis and metabolites, reactive oxygen species and hypoxia, macrophage activation and conversion, indoleamine 2,3-dioxygenase regulation of dendritic cells, vascular endothelial growth factor regulation of angiogenesis, fibrosis inhibition, endoglin, and Janus kinase signaling emerge as examples of important potential nexuses in the regulation of tumorigenesis and the tumor microenvironment that can be targeted. We have also identified therapeutic agents as approaches, in particular natural products such as berberine, resveratrol, onionin A, epigallocatechin gallate, genistein, curcumin, naringenin, desoxyrhapontigenin, piperine, and zerumbone, that may warrant further investigation to target the tumor microenvironment for the treatment and/or prevention of cancer.


Asunto(s)
Carcinogénesis/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Microambiente Tumoral/genética , Antineoplásicos/uso terapéutico , Carcinogénesis/genética , Proliferación Celular/efectos de los fármacos , Humanos , Terapia Molecular Dirigida , Neoplasias/genética , Neoplasias/prevención & control , Neovascularización Patológica/genética , Neovascularización Patológica/prevención & control , Transducción de Señal , Microambiente Tumoral/efectos de los fármacos
6.
Semin Cancer Biol ; 35 Suppl: S25-S54, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25892662

RESUMEN

Proliferation is an important part of cancer development and progression. This is manifest by altered expression and/or activity of cell cycle related proteins. Constitutive activation of many signal transduction pathways also stimulates cell growth. Early steps in tumor development are associated with a fibrogenic response and the development of a hypoxic environment which favors the survival and proliferation of cancer stem cells. Part of the survival strategy of cancer stem cells may manifested by alterations in cell metabolism. Once tumors appear, growth and metastasis may be supported by overproduction of appropriate hormones (in hormonally dependent cancers), by promoting angiogenesis, by undergoing epithelial to mesenchymal transition, by triggering autophagy, and by taking cues from surrounding stromal cells. A number of natural compounds (e.g., curcumin, resveratrol, indole-3-carbinol, brassinin, sulforaphane, epigallocatechin-3-gallate, genistein, ellagitannins, lycopene and quercetin) have been found to inhibit one or more pathways that contribute to proliferation (e.g., hypoxia inducible factor 1, nuclear factor kappa B, phosphoinositide 3 kinase/Akt, insulin-like growth factor receptor 1, Wnt, cell cycle associated proteins, as well as androgen and estrogen receptor signaling). These data, in combination with bioinformatics analyses, will be very important for identifying signaling pathways and molecular targets that may provide early diagnostic markers and/or critical targets for the development of new drugs or drug combinations that block tumor formation and progression.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proliferación Celular/efectos de los fármacos , Neoplasias/patología , Neoplasias/terapia , Antineoplásicos/uso terapéutico , Proteínas de Ciclo Celular/biosíntesis , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Terapia Molecular Dirigida , Neoplasias/genética , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Transducción de Señal/efectos de los fármacos
7.
Semin Cancer Biol ; 35 Suppl: S185-S198, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25818339

RESUMEN

Cancer immune evasion is a major stumbling block in designing effective anticancer therapeutic strategies. Although considerable progress has been made in understanding how cancers evade destructive immunity, measures to counteract tumor escape have not kept pace. There are a number of factors that contribute to tumor persistence despite having a normal host immune system. Immune editing is one of the key aspects why tumors evade surveillance causing the tumors to lie dormant in patients for years through "equilibrium" and "senescence" before re-emerging. In addition, tumors exploit several immunological processes such as targeting the regulatory T cell function or their secretions, antigen presentation, modifying the production of immune suppressive mediators, tolerance and immune deviation. Besides these, tumor heterogeneity and metastasis also play a critical role in tumor growth. A number of potential targets like promoting Th1, NK cell, γδ T cell responses, inhibiting Treg functionality, induction of IL-12, use of drugs including phytochemicals have been designed to counter tumor progression with much success. Some natural agents and phytochemicals merit further study. For example, use of certain key polysaccharide components from mushrooms and plants have shown to possess therapeutic impact on tumor-imposed genetic instability, anti-growth signaling, replicative immortality, dysregulated metabolism etc. In this review, we will discuss the advances made toward understanding the basis of cancer immune evasion and summarize the efficacy of various therapeutic measures and targets that have been developed or are being investigated to enhance tumor rejection.


Asunto(s)
Carcinogénesis/inmunología , Evasión Inmune , Neoplasias/inmunología , Neoplasias/terapia , Presentación de Antígeno/inmunología , Carcinogénesis/efectos de los fármacos , Humanos , Tolerancia Inmunológica/efectos de los fármacos , Tolerancia Inmunológica/inmunología , Neoplasias/patología , Fitoquímicos/uso terapéutico , Linfocitos T Reguladores/inmunología , Escape del Tumor/efectos de los fármacos , Escape del Tumor/inmunología
8.
Semin Cancer Biol ; 35 Suppl: S55-S77, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25749195

RESUMEN

The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting.


Asunto(s)
Carcinogénesis/genética , Proliferación Celular/genética , Neoplasias/genética , Neoplasias/terapia , Transducción de Señal , Proteínas de Unión al ADN , Factor 15 de Diferenciación de Crecimiento/genética , Vía de Señalización Hippo , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Terapia Molecular Dirigida , Proteínas Nucleares/genética , Fosfohidrolasa PTEN/genética , Proteínas Serina-Treonina Quinasas/genética , Proteína de Retinoblastoma/genética , Somatomedinas/genética , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/genética
9.
Semin Cancer Biol ; 35 Suppl: S224-S243, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25600295

RESUMEN

Deregulation of angiogenesis--the growth of new blood vessels from an existing vasculature--is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding "the most important target" may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the "Halifax Project" within the "Getting to know cancer" framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor angiogenesis and the pathological tumor vasculature which would be well suited as targets for anti-angiogenic therapy: (1) endothelial cell migration/tip cell formation, (2) structural abnormalities of tumor vessels, (3) hypoxia, (4) lymphangiogenesis, (5) elevated interstitial fluid pressure, (6) poor perfusion, (7) disrupted circadian rhythms, (8) tumor promoting inflammation, (9) tumor promoting fibroblasts and (10) tumor cell metabolism/acidosis. Following this analysis, we scrutinized the available literature on broadly acting anti-angiogenic natural products, with a focus on finding qualitative information on phytochemicals which could inhibit these targets and came up with 10 prototypical phytochemical compounds: (1) oleanolic acid, (2) tripterine, (3) silibinin, (4) curcumin, (5) epigallocatechin-gallate, (6) kaempferol, (7) melatonin, (8) enterolactone, (9) withaferin A and (10) resveratrol. We suggest that these plant-derived compounds could be combined to constitute a broader acting and more effective inhibitory cocktail at doses that would not be likely to cause excessive toxicity. All the targets and phytochemical approaches were further cross-validated against their effects on other essential tumorigenic pathways (based on the "hallmarks" of cancer) in order to discover possible synergies or potentially harmful interactions, and were found to generally also have positive involvement in/effects on these other aspects of tumor biology. The aim is that this discussion could lead to the selection of combinations of such anti-angiogenic compounds which could be used in potent anti-tumor cocktails, for enhanced therapeutic efficacy, reduced toxicity and circumvention of single-agent anti-angiogenic resistance, as well as for possible use in primary or secondary cancer prevention strategies.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias/terapia , Neovascularización Patológica/terapia , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/crecimiento & desarrollo , Vasos Sanguíneos/patología , Proliferación Celular/efectos de los fármacos , Humanos , Inmunoterapia , Neoplasias/prevención & control , Neovascularización Patológica/prevención & control
10.
Arch Orthop Trauma Surg ; 128(2): 189-93, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17492295

RESUMEN

UNLABELLED: BACKGROUND DATA AND OBJECTIVES: We present here a case report of a patient with metaphyseal osteosarcoma with a preserved epiphysis and reconstructed by a vascularized fibular graft and hydroxyapatite composites. METHODS: The case was a 14-year-old boy, who had osteosarcoma in the proximal tibia. After the diagnosis was confirmed by biopsy, the patient immediately received preoperative chemotherapy including high-dose Methotrexate, Cisplatin and Doxrubicin. Imagings after preoperative chemotherapy including MRI and contrasted enhanced CT confirmed no tumor penetration into the physis. Subsequently, we performed transepiphyseal resection of the proximal tibia to reserve the joint surface. The intercalary twin-barreled vascularized fibular graft was placed with hydroxyapatite composites. The patella tendon was reattached to the grafted fibular to biologically reconstruct the knee extensor mechanism. Postoperative chemotherapy was completed with the same regime as preoperative chemotherapy. OUTCOMES: The bony union was completed at 10 months after the operation. The Enneking's functional evaluation score was 28 out of 30 points (93%). There was no evidence of local recurrence and no metastatic disease during the 42 months follow-up after initial diagnosis. CONCLUSION: An accurate evaluation of MRI and CT can give a reliable assessment of intraphyseal penetration of metaphyseal osteosarcoma. In case of no involvement of the tumor in the physis, transepiphyseal osteotomy is the optimal procedure to preserve the joint surface and superior function of the joint, especially in the proximal tibia.


Asunto(s)
Neoplasias Óseas/cirugía , Durapatita , Peroné/trasplante , Osteosarcoma/cirugía , Tibia , Adolescente , Epífisis , Peroné/irrigación sanguínea , Humanos , Masculino , Osteotomía/métodos , Trasplante Autólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA