RESUMEN
Abscisic acid is a phytohormone found in fruits and vegetables and is endogenously produced in mammals. In humans and mice, lanthionine synthetase C-like 2 (LANCL2) has been characterized as the natural receptor for ABA. Herein, we characterize the efficacy of a fig fruit extract of ABA in promoting glycemic control. This ABA-enriched extract, at 0.125 µg ABA/kg body weight, improves glucose tolerance, insulin sensitivity and fasting blood glucose in diet-induced obesity (DIO) and db/db mouse models. In addition to decreasing systemic inflammation and providing glycemic control without increasing insulin, ABA extract modulates the metabolic activity of muscle. ABA increases expression of important glycogen synthase, glucose, fatty acid and mitochondrial metabolism genes and increases direct measures of fatty acid oxidation, glucose oxidation and metabolic flexibility in soleus muscle cells from ABA-treated mice with DIO. Glycolytic and mitochondrial ATP production were increased in ABA-treated human myotubes. Further, ABA synergized with insulin to dramatically increase the rate of glycogen synthesis. The loss of LANCL2 in skeletal muscle abrogated the effect of ABA extract in the DIO model and increased fasting blood glucose levels. This data further supports the clinical development of ABA in the treatment of pre-diabetes, type 2 diabetes and metabolic syndrome.
Asunto(s)
Ácido Abscísico/farmacología , Ficus/química , Inflamación/tratamiento farmacológico , Resistencia a la Insulina/fisiología , Proteínas de la Membrana/metabolismo , Músculo Esquelético/efectos de los fármacos , Proteínas de Unión a Fosfato/metabolismo , Extractos Vegetales/farmacología , Animales , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Glucosa/metabolismo , Humanos , Inflamación/metabolismo , Insulina/metabolismo , Ratones , Ratones Endogámicos NOD , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Obesidad/metabolismoRESUMEN
Abscisic acid (ABA) can improve glucose homeostasis and reduce inflammation in mammals by activating lanthionine synthetase C-like 2 (LANCL2). This study examined the effects of two fig fruit extracts (FFEs), each administered at two different ABA doses, on glycemic index (GI) and insulinemic index (II) to a standard glucose drink. In a randomized, double-blind crossover study, 10 healthy adults consumed 4 test beverages containing FFE with postprandial glucose and insulin assessed at regular intervals over 2 h to determine GI and II responses. Test beverages containing 200 mg FFE-50× and 1200 mg FFE-10× significantly reduced GI values by -25% (P = 0.001) and -24% (P = 0.002), respectively. Two lower doses of FFE also reduced GI values compared with the reference drink (by approximately -14%), but the differences did not reach statistical significance. Addition of FFE to the glucose solution significantly reduced II values at all dosages and displayed a clear dose-response reduction: FFE-50× at 100 mg and 200 mg (-14% (P < 0.05) and -24% (P = 0.01), respectively) and FFE-10× at 600 mg and 1200 mg (-16% (P < 0.05) and -24% (P = 0.01), respectively). FFE supplementation is a promising nutritional intervention for the management of acute postprandial glucose and insulin homeostasis, and it is a possible adjunctive treatment for glycemic management of chronic metabolic disorders such as prediabetes and type 2 diabetes mellitus.
Asunto(s)
Ácido Abscísico/farmacología , Glucemia/efectos de los fármacos , Ficus/química , Insulina/sangre , Extractos Vegetales/farmacología , Periodo Posprandial , Ácido Abscísico/química , Adulto , Estudios Cruzados , Método Doble Ciego , Femenino , Frutas/química , Humanos , Masculino , Extractos Vegetales/química , Adulto JovenRESUMEN
BT-11 is an orally active, gut-restricted investigational therapeutic targeting the lanthionine synthetase C-like 2 pathway with lead indications in ulcerative colitis (UC) and Crohn disease (CD), 2 manifestations of inflammatory bowel disease (IBD). In 5 mouse models of IBD, BT-11 is effective at oral doses of 8 mg/kg. BT-11 was also efficacious at nanomolar concentrations in primary human samples from patients with UC and CD. BT-11 was tested under Good Laboratory Practice conditions in 90-day repeat-dose general toxicity studies in rats and dogs, toxicokinetics, respiratory, cardiovascular and central nervous system safety pharmacology, and genotoxicity studies. Oral BT-11 did not cause any clinical signs of toxicity, biochemical or hematological changes, or macroscopic or microscopic changes to organs in 90-day repeat-dose toxicity studies in rats and dogs at doses up to 1,000 mg/kg/d. Oral BT-11 resulted in low systemic exposure in both rats (area under the curve exposure from t = 0 to t = 8 hours [AUC0-8] of 216 h × ng/mL) and dogs (650 h × ng/mL) and rapid clearance with an average half-life of 3 hours. BT-11 did not induce changes in respiratory function, electrocardiogram parameters, or behavior with single oral doses of 1,000 mg/kg/d. There was no evidence of mutagenic or genotoxic potential for BT-11 up to tested limit doses using an Ames test, chromosomal aberration assay in human peripheral blood lymphocytes, or micronucleus assay in rats. Therefore, nonclinical studies show BT-11 to be a safe and well-tolerated oral therapeutic with potential as a potent immunometabolic therapy for UC and CD with no-observed adverse effect level >1,000 mg/kg in in vivo studies.
Asunto(s)
Bencimidazoles/farmacocinética , Bencimidazoles/toxicidad , Proteínas de la Membrana/antagonistas & inhibidores , Piperazinas/farmacocinética , Piperazinas/toxicidad , Administración Oral , Animales , Perros , Evaluación Preclínica de Medicamentos , Femenino , Masculino , Ratas Wistar , Pruebas de ToxicidadRESUMEN
Interactions among the gut microbiome, dysregulated immune responses, and genetic factors contribute to the pathogenesis of inflammatory bowel disease (IBD). Nlrx1-/- mice have exacerbated disease severity, colonic lesions, and increased inflammatory markers. Global transcriptomic analyses demonstrate enhanced mucosal antimicrobial defense response, chemokine and cytokine expression, and epithelial cell metabolism in colitic Nlrx1-/- mice compared to wild-type (WT) mice. Cell-specificity studies using cre-lox mice demonstrate that the loss of NLRX1 in intestinal epithelial cells (IEC) recapitulate the increased sensitivity to DSS colitis observed in whole body Nlrx1-/- mice. Further, organoid cultures of Nlrx1-/- and WT epithelial cells confirm the altered patterns of proliferation, amino acid metabolism, and tight junction expression. These differences in IEC behavior can impact the composition of the microbiome. Microbiome analyses demonstrate that colitogenic bacterial taxa such as Veillonella and Clostridiales are increased in abundance in Nlrx1-/- mice and in WT mice co-housed with Nlrx1-/- mice. The transfer of an Nlrx1-/--associated gut microbiome through co-housing worsens disease in WT mice confirming the contributions of the microbiome to the Nlrx1-/- phenotype. To validate NLRX1 effects on IEC metabolism mediate gut-microbiome interactions, restoration of WT glutamine metabolic profiles through either exogenous glutamine supplementation or administration of 6-diazo-5-oxo-l-norleucine abrogates differences in inflammation, microbiome, and overall disease severity in Nlrx1-/- mice. The influence NLRX1 deficiency on SIRT1-mediated effects is identified to be an upstream controller of the Nlrx1-/- phenotype in intestinal epithelial cell function and metabolism. The altered IEC function and metabolisms leads to changes in barrier permeability and microbiome interactions, in turn, promoting greater translocation and inflammation and resulting in an increased disease severity. In conclusion, NLRX1 is an immunoregulatory molecule and a candidate modulator of the interplay between mucosal inflammation, metabolism, and the gut microbiome during IBD.
Asunto(s)
Clostridiales/fisiología , Colitis/metabolismo , Células Epiteliales/fisiología , Microbioma Gastrointestinal/inmunología , Inflamación/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Proteínas Mitocondriales/metabolismo , Veillonella/fisiología , Animales , Células Cultivadas , Colitis/inducido químicamente , Colitis/inmunología , Sulfato de Dextran , Suplementos Dietéticos , Modelos Animales de Enfermedad , Glutamina/administración & dosificación , Humanos , Inmunidad Innata , Enfermedades Inflamatorias del Intestino/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/genéticaRESUMEN
Lanthionine synthetase cyclase-like receptor 2 (LANCL2) is a novel therapeutic target for Crohn's disease (CD). BT-11 is a small molecule that binds LANCL2, is orally active, and has demonstrated therapeutic efficacy in 3 validated mouse models of colitis at doses as low as 8 mg/kg/d. Exploratory experiments evaluated BT-11 in male Harlan Sprague Dawley rats with a single oral dose of 500 mg/kg and 80 mg/kg/d for 14 days (n = 10 rats dosed/group). Treated and control rats were observed for behavioral detriments, and blood and tissues were collected for clinical pathology and histopathological examination. A functional observational battery demonstrated no differences between treated and control groups over multiple times of observation for quantal, categorical, and continuous end points, including posture, in cage activity, approach, response to touch, weight, grip strength, body temperature, and time on a rotarod. Histopathological examination of the brain, kidney, liver, adrenal gland, testes, stomach, small and large intestines, duodenum, pancreas, heart, lungs, spleen, thymus, and rib found no significant differences between the groups. Plasma enzymes associated with liver function were transiently elevated 2 to 4 days after the 500 mg/kg single dose but returned to normal values by 8 days and were not observed at any time in rats given 80 mg/kg/d for 14 days. One hour after oral administration of a single dose of 80 mg/kg, BT-11 had a maximal concentration of 21 ng/mL; the half-life was 3 hours. These experimental results demonstrated that BT-11 is well tolerated in rats, and, with further testing, may hold promise as an orally active therapeutic for CD.
Asunto(s)
Bencimidazoles/farmacocinética , Bencimidazoles/uso terapéutico , Enfermedad de Crohn/tratamiento farmacológico , Piperazinas/farmacocinética , Piperazinas/uso terapéutico , Administración Oral , Animales , Conducta Animal/efectos de los fármacos , Bencimidazoles/toxicidad , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Determinación de Punto Final , Semivida , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Piperazinas/toxicidad , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Pruebas de ToxicidadRESUMEN
Conjugated linoleic acid (CLA) is a mixture of positional and geometric isomers of linoleic acid. This family of polyunsaturated fatty acids has drawn significant attention in the last three decades for its variety of biologically beneficial properties and health effects. CLA has been shown to exert various potent protective functions such as anti-inflammatory, anticarcinogenic, antiadipogenic, antidiabetic and antihypertensive properties in animal models of disease. Therefore, CLA represents a nutritional avenue to prevent lifestyle diseases or metabolic syndrome. Initially, the overall effects of CLA were thought to be the result of interactions between its two major isomers: cis-9, trans-11 and trans-10, cis-12. However, later evidence suggests that such physiological effects of CLA might be different between the isomers: t-10, c-12-CLA is thought to be anticarcinogenic, antiobesity and antidiabetic, whereas c-9, t-11-CLA is mainly anti-inflammatory. Although preclinical data support a benefit of CLA supplementation, human clinical findings have yet to show definitive evidence of a positive effect. The purpose of this review is to comprehensively summarize the mechanisms of action and anti-inflammatory properties of dietary CLA supplementation and evaluate the potential uses of CLA in human health and disease.
Asunto(s)
Antiinflamatorios/farmacología , Suplementos Dietéticos , Inmunidad/efectos de los fármacos , Inflamación/tratamiento farmacológico , Ácidos Linoleicos Conjugados/farmacología , Animales , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Humanos , Isomerismo , Ácidos Linoleicos Conjugados/química , Ácidos Linoleicos Conjugados/uso terapéuticoRESUMEN
Nucleotide-binding domain and leucine-rich repeat containing (NLR) family are intracellular sentinels of cytosolic homeostasis that orchestrate immune and inflammatory responses in infectious and immune-mediated diseases. NLRX1 is a mitochondrial-associated NOD-like receptor involved in the modulation of immune and metabolic responses. This study utilizes molecular docking approaches to investigate the structure of NLRX1 and experimentally assesses binding to naturally occurring compounds from several natural product and lipid databases. Screening of compound libraries predicts targeting of NLRX1 by conjugated trienes, polyketides, prenol lipids, sterol lipids, and coenzyme A-containing fatty acids for activating the NLRX1 pathway. The ligands of NLRX1 were identified by docking punicic acid (PUA), eleostearic acid (ESA), and docosahexaenoic acid (DHA) to the C-terminal fragment of the human NLRX1 (cNLRX1). Their binding and that of positive control RNA to cNLRX1 were experimentally determined by surface plasmon resonance (SPR) spectroscopy. In addition, the ligand binding sites of cNLRX1 were predicted in silico and validated experimentally. Target mutagenesis studies demonstrate that mutation of 4 critical residues ASP677, PHE680, PHE681, and GLU684 to alanine resulted in diminished affinity of PUA, ESA, and DHA to NLRX1. Consistent with the regulatory actions of NLRX1 on the NF-κB pathway, treatment of bone marrow derived macrophages (BMDM)s with PUA and DHA suppressed NF-κB activity in a NLRX1 dependent mechanism. In addition, a series of pre-clinical efficacy studies were performed using a mouse model of dextran sodium sulfate (DSS)-induced colitis. Our findings showed that the regulatory function of PUA on colitis is NLRX1 dependent. Thus, we identified novel small molecules that bind to NLRX1 and exert anti-inflammatory actions.
Asunto(s)
Antiinflamatorios/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Simulación del Acoplamiento Molecular , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Colitis/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ligandos , Ácidos Linolénicos/metabolismo , Ácidos Linolénicos/farmacología , Ácidos Linolénicos/uso terapéutico , Ratones , Proteínas Mitocondriales/genética , Mutación , FN-kappa B/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Estructura Terciaria de ProteínaRESUMEN
Enteroaggregative Escherichia coli (EAEC) is increasingly recognized as a major cause of diarrheal disease globally. In the current study, we investigated the impact of zinc deficiency on the host and pathogenesis of EAEC. Several outcomes of EAEC infection were investigated including weight loss, EAEC shedding and tissue burden, leukocyte recruitment, intestinal cytokine expression, and virulence expression of the pathogen in vivo. Mice fed a protein source defined zinc deficient diet (dZD) had an 80% reduction of serum zinc and a 50% reduction of zinc in luminal contents of the bowel compared to mice fed a protein source defined control diet (dC). When challenged with EAEC, dZD mice had significantly greater weight loss, stool shedding, mucus production, and, most notably, diarrhea compared to dC mice. Zinc deficient mice had reduced infiltration of leukocytes into the ileum in response to infection suggesting an impaired immune response. Interestingly, expression of several EAEC virulence factors were increased in luminal contents of dZD mice. These data show a dual effect of dietary zinc in benefitting the host while impairing virulence of the pathogen. The study demonstrates the critical importance of zinc and may help elucidate the benefits of zinc supplementation in cases of childhood diarrhea and malnutrition.
Asunto(s)
Diarrea/inmunología , Diarrea/microbiología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Escherichia coli/aislamiento & purificación , Zinc/deficiencia , Animales , Derrame de Bacterias , Peso Corporal , Diarrea/patología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Infecciones por Escherichia coli/patología , Íleon/patología , Leucocitos/inmunología , Masculino , RatonesRESUMEN
Amixicile shows efficacy in the treatment of Clostridium difficile infections (CDI) in a mouse model, with no recurrence of CDI. Since amixicile selectively inhibits the action of a B vitamin (thiamine pyrophosphate) cofactor of pyruvate:ferredoxin oxidoreductase (PFOR), it may both escape mutation-based drug resistance and spare beneficial probiotic gut bacteria that do not express this enzyme. Amixicile is a water-soluble derivative of nitazoxanide (NTZ), an antiparasitic therapeutic that also shows efficacy against CDI in humans. In comparative studies, amixicile showed no toxicity to hepatocytes at 200 µM (NTZ was toxic above 10 µM); was not metabolized by human, dog, or rat liver microsomes; showed equivalence or superiority to NTZ in cytochrome P450 assays; and did not activate efflux pumps (breast cancer resistance protein, P glycoprotein). A maximum dose (300 mg/kg) of amixicile given by the oral or intraperitoneal route was well tolerated by mice and rats. Plasma exposure (rats) based on the area under the plasma concentration-time curve was 79.3 h · µg/ml (30 mg/kg dose) to 328 h · µg/ml (100 mg/kg dose), the maximum concentration of the drug in serum was 20 µg/ml, the time to the maximum concentration of the drug in serum was 0.5 to 1 h, and the half-life was 5.6 h. Amixicile did not concentrate in mouse feces or adversely affect gut populations of Bacteroides species, Firmicutes, segmented filamentous bacteria, or Lactobacillus species. Systemic bioavailability was demonstrated through eradication of Helicobacter pylori in a mouse infection model. In summary, the efficacy of amixicile in treating CDI and other infections, together with low toxicity, an absence of mutation-based drug resistance, and excellent drug metabolism and pharmacokinetic metrics, suggests a potential for broad application in the treatment of infections caused by PFOR-expressing microbial pathogens in addition to CDI.
Asunto(s)
Antibacterianos/farmacocinética , Benzamidas/farmacocinética , Infecciones por Helicobacter/tratamiento farmacológico , Helicobacter pylori/efectos de los fármacos , Tiazoles/farmacocinética , Animales , Antibacterianos/sangre , Antibacterianos/farmacología , Área Bajo la Curva , Benzamidas/sangre , Benzamidas/farmacología , Disponibilidad Biológica , Línea Celular , Supervivencia Celular/efectos de los fármacos , Perros , Evaluación Preclínica de Medicamentos , Semivida , Infecciones por Helicobacter/sangre , Infecciones por Helicobacter/microbiología , Helicobacter pylori/crecimiento & desarrollo , Helicobacter pylori/metabolismo , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Microbiota/efectos de los fármacos , Microbiota/fisiología , Microsomas Hepáticos/efectos de los fármacos , Piruvato-Sintasa/metabolismo , Ratas , Tiamina Pirofosfato/metabolismo , Tiazoles/sangre , Tiazoles/farmacologíaRESUMEN
Pomegranate fruit presents strong anti-inflammatory, antioxidant, antiobesity, and antitumoral properties, thus leading to an increased popularity as a functional food and nutraceutical source since ancient times. It can be divided into three parts: seeds, peel, and juice, all of which seem to have medicinal benefits. Several studies investigate its bioactive components as a means to associate them with a specific beneficial effect and develop future products and therapeutic applications. Many beneficial effects are related to the presence of ellagic acid, ellagitannins (including punicalagins), punicic acid and other fatty acids, flavonoids, anthocyanidins, anthocyanins, estrogenic flavonols, and flavones, which seem to be its most therapeutically beneficial components. However, the synergistic action of the pomegranate constituents appears to be superior when compared to individual constituents. Promising results have been obtained for the treatment of certain diseases including obesity, insulin resistance, intestinal inflammation, and cancer. Although moderate consumption of pomegranate does not result in adverse effects, future studies are needed to assess safety and potential interactions with drugs that may alter the bioavailability of bioactive constituents of pomegranate as well as drugs. The aim of this review is to summarize the health effects and mechanisms of action of pomegranate extracts in chronic inflammatory diseases.
RESUMEN
Pomegranate seed oil (PSO), which is the major source of conjugated linolenic acids such as punicic acid (PuA), exhibits strong anti-inflammatory properties. Necrotizing enterocolitis (NEC) is a devastating disease associated with severe and excessive intestinal inflammation. The aim of this study was to evaluate the effects of orally administered PSO on the development of NEC, intestinal epithelial proliferation, and cytokine regulation in a rat model of NEC. Premature rats were divided into three groups: dam fed (DF), formula-fed rats (FF), or rats fed with formula supplemented with 1.5% of PSO (FF + PSO). All groups were exposed to asphyxia/cold stress to induce NEC. Intestinal injury, epithelial cell proliferation, cytokine production, and trefoil factor 3 (Tff3) production were evaluated in the terminal ileum. Oral administration of PSO (FF+PSO) decreased the incidence of NEC from 61 to 26%. Feeding formula with PSO improved enterocyte proliferation in the site of injury. Increased levels of proinflammatory IL-6, IL-8, IL-12, IL-23, and TNF-α in the ileum of FF rats were normalized in PSO-treated animals. Tff3 production in the FF rats was reduced compared with DF but not further affected by the PSO. In conclusion, administration of PSO protects against NEC in the neonatal rat model. This protective effect is associated with an improvement of intestinal epithelial homeostasis and a strong anti-inflammatory effect of PSO on the developing intestinal mucosa.
Asunto(s)
Enterocolitis Necrotizante/tratamiento farmacológico , Lythraceae/química , Aceites de Plantas/farmacología , Semillas/química , Animales , Animales Recién Nacidos , Dieta , Enterocolitis Necrotizante/patología , Femenino , Regulación de la Expresión Génica , Íleon/patología , Lípidos/química , Mucina 2/genética , Mucina 2/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Aceites de Plantas/química , Embarazo , ARN/genética , ARN/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor Trefoil-3RESUMEN
BACKGROUND: Lanthionine synthetase component C-like protein 2 (LANCL2) is a member of the eukaryotic lanthionine synthetase component C-Like protein family involved in signal transduction and insulin sensitization. Recently, LANCL2 is a target for the binding and signaling of abscisic acid (ABA), a plant hormone with anti-diabetic and anti-inflammatory effects. METHODOLOGY/PRINCIPAL FINDINGS: The goal of this study was to determine the role of LANCL2 as a potential therapeutic target for developing novel drugs and nutraceuticals against inflammatory diseases. Previously, we performed homology modeling to construct a three-dimensional structure of LANCL2 using the crystal structure of lanthionine synthetase component C-like protein 1 (LANCL1) as a template. Using this model, structure-based virtual screening was performed using compounds from NCI (National Cancer Institute) Diversity Set II, ChemBridge, ZINC natural products, and FDA-approved drugs databases. Several potential ligands were identified using molecular docking. In order to validate the anti-inflammatory efficacy of the top ranked compound (NSC61610) in the NCI Diversity Set II, a series of in vitro and pre-clinical efficacy studies were performed using a mouse model of dextran sodium sulfate (DSS)-induced colitis. Our findings showed that the lead compound, NSC61610, activated peroxisome proliferator-activated receptor gamma in a LANCL2- and adenylate cyclase/cAMP dependent manner in vitro and ameliorated experimental colitis by down-modulating colonic inflammatory gene expression and favoring regulatory T cell responses. CONCLUSIONS/SIGNIFICANCE: LANCL2 is a novel therapeutic target for inflammatory diseases. High-throughput, structure-based virtual screening is an effective computational-based drug design method for discovering anti-inflammatory LANCL2-based drug candidates.
Asunto(s)
Antiinflamatorios/farmacología , Simulación por Computador , Receptores de Superficie Celular/metabolismo , Adenilil Ciclasas/metabolismo , Animales , Antiinflamatorios/uso terapéutico , Línea Celular , Colon/efectos de los fármacos , Colon/metabolismo , AMP Cíclico/metabolismo , Evaluación Preclínica de Medicamentos , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Proteínas de la Membrana , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , PPAR gamma/metabolismo , Fenotipo , Proteínas de Unión a Fosfato , Conformación Proteica , Receptores de Superficie Celular/química , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/genética , Homología de Secuencia de Aminoácido , Transducción de Señal/efectos de los fármacos , Interfaz Usuario-ComputadorRESUMEN
BACKGROUND: Pomegranate seed oil has been shown to protect against diet induced obesity and insulin resistance. OBJECTIVE: To characterize the metabolic effects of punicic acid on high fat diet induced obesity and insulin resistance. DESIGN: High-fat diet or high-fat diet with 1% Pomegranate seed oil (PUA) was fed for 12 weeks to induce obesity and insulin resistance. We assessed body weight and composition (pSABRE DEXA-scan), energy expenditure (Columbus Instruments) and insulin sensitivity at the end of the 12 weeks. RESULTS: PSO intake resulted in a lower body weight, 30.5±2.9 vs 33.8±3.2 g PSO vs HFD respectively, p=0.02, without affecting food intake or energy expenditure. The lower body weight was fully explained by a decreased body fat mass, 3.3±2.3 vs 6.7±2.7 g for PSO and HFD fed mice, respectively, p=0.02. Insulin clamps showed that PSO did not affect liver insulin sensitivity but clearly improved peripheral insulin sensitivity, 164±52% vs 92±24% for PSO and HFD fed mice respectively, p=0.01. CONCLUSIONS: We conclude that dietary PSO ameliorates high-fat diet induced obesity and insulin resistance in mice, independent of changes in food intake or energy expenditure.
Asunto(s)
Grasas de la Dieta/administración & dosificación , Resistencia a la Insulina , Ácidos Linolénicos/administración & dosificación , Lythraceae/química , Obesidad/prevención & control , Animales , Glucemia/análisis , Modelos Animales de Enfermedad , Ingestión de Alimentos , Técnica de Clampeo de la Glucosa , Prueba de Tolerancia a la Glucosa , Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Aceites de Plantas/administración & dosificación , Semillas/químicaRESUMEN
The prevalence of obesity and its associated comorbidities has grown to epidemic proportions in the US and worldwide. Thus, developing safe and effective therapeutic approaches against these widespread and debilitating diseases is important and timely. Activation of peroxisome proliferator-activated receptors (PPARs) α, γ, and δ through several classes of pharmaceuticals can prevent or treat a variety of metabolic and inflammatory diseases, including type II diabetes (T2D). Thus, PPARs represent important molecular targets for developing novel and better treatments for a wide range of debilitating and widespread obesity-related diseases and disorders. However, available PPAR γ agonistic drugs such as Avandia have significant adverse side effects, including weight gain, fluid retention, hepatotoxicity, and congestive heart failure. An alternative to synthetic agonists of PPAR γ is the discovery and development of naturally occurring and safer nutraceuticals that may be dual or pan PPAR agonists. The purpose of this paper is to summarize the health effects of three plant-derived PPAR agonists: abscisic acid (ABA), punicic acid (PUA), and catalpic acid (CAA) in the prevention and treatment of chronic inflammatory and metabolic diseases and disorders.
RESUMEN
The rates of type 2 diabetes (T2D) are rising to epidemic proportions in the US and worldwide. While current T2D medications are efficacious, significant side effects have limited their use and availability. Our laboratory has discovered that abscisic acid (ABA) exerts anti-diabetic effects, in part, by activating peroxisome proliferator-activated receptor γ (PPAR γ). However, since ABA does not bind to the ligand-binding domain (LBD) of PPAR γ, the mechanism of activation of PPAR γ by ABA remains unknown. Lanthionine synthetase component C-like protein 2 (LANCL2) was predicted to be a novel target for the binding and signaling of ABA in human granulocytes and rat insulinoma cells. The goal of this study was to determine whether LANCL2 is a molecular target of ABA and other PPAR γ agonists. To this end we performed homology modeling to construct a three-dimensional structure of LANCL2 using the crystal structure of LANCL1 as a template. Our molecular docking studies predicted that ABA and other PPAR γ agonists (e.g., rosiglitazone and pioglitazone) share a binding site on the surface of LANCL2. The identification of a binding site for PPAR γ agonists will facilitate the high-throughput virtual screening of large compound libraries and may shed new light on alternative mechanisms of PPAR γ activation.
Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/química , Proteínas de la Membrana/química , Modelos Moleculares , Proteínas Nucleares/química , Ácido Abscísico/química , Ácido Abscísico/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Diabetes Mellitus Tipo 2/prevención & control , Humanos , Ligandos , Datos de Secuencia Molecular , PPAR gamma/agonistas , PPAR gamma/química , PPAR gamma/metabolismo , Proteínas de Unión a Fosfato , Estructura Terciaria de Proteína , Receptores Acoplados a Proteínas G/química , Alineación de Secuencia , Relación Estructura-ActividadRESUMEN
The phytohormone abscisic acid (ABA) has been shown to be effective in ameliorating chronic and acute inflammation. The objective of this study was to investigate whether ABA's anti-inflammatory efficacy in the gut is dependent on peroxisome proliferator-activated receptor γ (PPARγ) in T cells. PPARγ-expressing and T cell-specific PPARγ null mice were fed diets with or without ABA (100 mg/kg) for 35 days prior to challenge with 2.5% dextran sodium sulfate. The severity of clinical disease was assessed daily, and mice were euthanized on Day 7 of the dextran sodium sulfate challenge. Colonic inflammation was assessed through macroscopic and histopathological examination of inflammatory lesions and real-time quantitative RT-PCR-based quantification of inflammatory genes. Flow cytometry was used to phenotypically characterize leukocyte populations in the blood and mesenteric lymph nodes. Colonic sections were stained immunohistochemically to determine the effect of ABA on colonic regulatory T (T(reg)) cells. ABA's beneficial effects on disease activity were completely abrogated in T cell-specific PPARγ null mice. Additionally, ABA improved colon histopathology, reduced blood F4/80(+)CD11b(+) monocytes, increased the percentage of CD4(+) T cells expressing the inhibitory molecule cytotoxic T lymphocyte antigen 4 in blood and enhanced the number of T(reg) cells in the mesenteric lymph nodes and colons of PPARγ-expressing but not T cell-specific PPARγ null mice. We conclude that dietary ABA ameliorates experimental inflammatory bowel disease by enhancing T(reg) cell accumulation in the colonic lamina propria through a PPARγ-dependent mechanism.
Asunto(s)
Ácido Abscísico/uso terapéutico , Antiinflamatorios/uso terapéutico , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , PPAR gamma/metabolismo , Linfocitos T Reguladores/metabolismo , Animales , Animales Modificados Genéticamente , Regulación hacia Abajo , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Ratones , Ratones Transgénicos , PPAR gamma/genética , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/patologíaRESUMEN
PURPOSE OF REVIEW: Inflammatory bowel disease (IBD) is a debilitating and widespread immune-mediated illness of unknown etiology. Current treatments are modestly successful and with significant side-effects. The purpose of this review is to summarize the current understanding of mechanisms of action underlying the anti-inflammatory actions of conjugated linoleic acid (CLA) and n-3 polyunsaturated fatty acids (PUFAs) in IBD. RECENT FINDINGS: Nutrition-based interventions that target peroxisome proliferator-activated receptors (PPARs) such as dietary CLA and n-3 PUFA have demonstrated anti-inflammatory efficacy in animal models of IBD. Clinical data on n-3 PUFA in IBD remains generally unimpressive, although results of a recent human study demonstrate that IBD remission can be maintained by maintaining the n-3: n-6 ratio more than 0.65 via n-3 PUFA intervention. In mice, CLA prevented inflammation-driven colorectal cancer by activating PPAR gamma and modulating regulatory T cells and macrophages. CLA is the subject of an ongoing clinical study in Crohn's disease patients. SUMMARY: Compelling evidence demonstrates that n-3 PUFA and CLA prevent or ameliorate IBD in animal models. However, this basic knowledge has not been translated into novel nutrition-based clinical interventions. For both compounds there is an urgent need for placebo-controlled, large-scale, multicenter clinical trials.
Asunto(s)
Suplementos Dietéticos , Ácidos Grasos Omega-3/uso terapéutico , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Ácidos Linoleicos Conjugados/uso terapéutico , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/inmunología , Ácidos Grasos Omega-3/farmacología , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Ácidos Linoleicos Conjugados/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismoRESUMEN
Conjugated linoleic acid (CLA) exerts a protective effect on experimental inflammatory bowel disease and shows promise as a chemopreventive agent against colorectal cancer (CRC) in mice, although the mechanisms by which it exerts its beneficial effects against malignancies in the gut are not completely understood. Mice lacking PPARgamma in immune and epithelial cells and PPARgamma-expressing littermates were fed either control or CLA-supplemented (1 g CLA/100 g) diets to determine the role of PPARgamma in inflammation-induced CRC. To induce tumor formation and colitis, mice were treated with azoxymethane and then challenged with 2% dextran sodium sulfate, respectively. Dietary CLA ameliorated disease activity, decreased colitis, and prevented adenocarcinoma formation in the PPARgamma-expressing floxed mice but not in the tissue-specific PPARgamma-null mice. Dietary CLA supplementation significantly decreased the percentages of macrophages in the mesenteric lymph nodes (MLN) regardless of the genotype and increased regulatory T cell numbers in MLN of PPARgamma-expressing, but not in the tissue-specific, PPARgamma-null mice. Colonic tumor necrosis factor-alpha mRNA expression was significantly suppressed in CLA-fed, PPARgamma-expressing mice. This study suggests CLA ameliorates colitis and prevents tumor formation in part through a PPARgamma-dependent mechanism.
Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/complicaciones , Ácidos Linoleicos Conjugados/farmacología , PPAR gamma/metabolismo , Animales , Línea Celular , Dieta , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Ácidos Linoleicos Conjugados/administración & dosificación , Ganglios Linfáticos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones NoqueadosRESUMEN
OBJECTIVE: Peroxisome proliferator-activated receptor gamma (PPAR gamma) is the molecular target for thiazolidinediones (TZDs), a class of synthetic antidiabetic agents. However, the naturally occurring agonists of PPARs remain largely unknown. Punicic acid (PUA) is a conjugated linolenic acid isomer found in pomegrante. The objective of this study was to test the hypothesis that PUA activates PPAR gamma and thereby ameliorates glucose homeostasis and obesity-related inflammation. METHODS: The ability of PUA to modulate PPAR reporter activity was determined in 3T3-L1 pre-adipocytes. A cell-free assay was used to measure PUA's binding to the ligand-binding domain (LBD) of human PPAR gamma. The preventive actions of PUA were investigated using genetically obese db/db mice and a model of diet-induced obesity in PPAR gamma-expressing and tissue-specific PPAR gamma null mice. Expression of PPAR alpha, gamma, PPAR-responsive genes and TNF-alpha was measured in tissues controlling glucose homeostasis. RESULTS: PUA caused a dose-dependent increase PPAR alpha and gamma reporter activity in 3T3-L1 cells and bound although weakly to the LBD of human PPAR gamma. Dietary PUA decreased fasting plasma glucose concentrations, improved the glucose-normalizing ability, suppressed NF-kappaB activation, TNF-alpha expression and upregulated PPAR alpha- and gamma-responsive genes in skeletal muscle and adipose tissue. Loss of PPAR gamma impaired the ability of dietary PUA to improve glucose homeostasis and suppress inflammation. CONCLUSIONS: Our studies demonstrate that PUA binds and robustly activates PPAR gamma, increases PPAR gamma-responsive gene expression and the loss of PPAR gamma in immune cells impairs its ability to ameliorate diabetes and inflammation.
Asunto(s)
Intolerancia a la Glucosa/tratamiento farmacológico , Ácidos Linolénicos/uso terapéutico , Lythraceae/química , Obesidad/tratamiento farmacológico , PPAR alfa/agonistas , Aceites de Plantas/uso terapéutico , Células 3T3 , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Glucemia/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Expresión Génica , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Ácidos Linolénicos/farmacología , Ratones , Ratones Noqueados , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , FN-kappa B/metabolismo , Obesidad/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gamma/agonistas , PPAR gamma/metabolismo , Fitoterapia , Aceites de Plantas/farmacología , Semillas , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
BACKGROUND: Whereas the immunomodulatory effects of feeding either arachidonic acid (AA) or docosahexaenoic acid (DHA) separately have been previously investigated, little is known about the immunomodulatory efficacy of AA or DHA when they are fed in combination as infant formula ingredients. OBJECTIVE: The objective of this study was to investigate the ability of AA- and DHA(AA/DHA)-enriched infant formula to modulate immune responses in the neonate in response to an inactivated influenza virus vaccine. DESIGN: Neonatal piglets (n = 48) were weaned on day 2 of age and distributed into 16 blocks of 3 littermate piglets each. Within each block, piglets were randomly assigned to a control formula, AA/DHA-enriched formula (0.63% AA and 0.34% DHA), or sow milk for 30 d. On day 9, 8 blocks of piglets were immunized with an inactivated influenza virus vaccine. On days 0, 9, 16, 23, and 30 after weaning, we measured influenza virus-specific T cell proliferation and phenotype of T subsets in peripheral blood. A delayed-type hypersensitivity reaction test was administered on day 28. Cytokine messenger RNA expression was determined by quantitative real time reverse transcriptase-polymerase chain reaction on day 30. RESULTS: The influenza virus-specific CD4(+) and CD8(+) T cell ex vivo lymphoproliferative responses were significantly lower on day 23 after immunization in piglets receiving dietary AA/DHA supplementation and sow milk than in those receiving the unsupplemented control formula. The immunomodulatory effects of AA/DHA-enriched formulas were consistent with up-regulation of interleukin 10 in peripheral blood mononuclear cells. CONCLUSION: Overall, it appears that the AA/DHA-enriched formula modulated antigen-specific T cell responses in part through an interleukin 10-dependent mechanism.