Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 620(7973): 328-335, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37438526

RESUMEN

Perovskites with low ionic radii metal centres (for example, Ge perovskites) experience both geometrical constraints and a gain in electronic energy through distortion; for these reasons, synthetic attempts do not lead to octahedral [GeI6] perovskites, but rather, these crystallize into polar non-perovskite structures1-6. Here, inspired by the principles of supramolecular synthons7,8, we report the assembly of an organic scaffold within perovskite structures with the goal of influencing the geometric arrangement and electronic configuration of the crystal, resulting in the suppression of the lone pair expression of Ge and templating the symmetric octahedra. We find that, to produce extended homomeric non-covalent bonding, the organic motif needs to possess self-complementary properties implemented using distinct donor and acceptor sites. Compared with the non-perovskite structure, the resulting [GeI6]4- octahedra exhibit a direct bandgap with significant redshift (more than 0.5 eV, measured experimentally), 10 times lower octahedral distortion (inferred from measured single-crystal X-ray diffraction data) and 10 times higher electron and hole mobility (estimated by density functional theory). We show that the principle of this design is not limited to two-dimensional Ge perovskites; we implement it in the case of copper perovskite (also a low-radius metal centre), and we extend it to quasi-two-dimensional systems. We report photodiodes with Ge perovskites that outperform their non-octahedral and lead analogues. The construction of secondary sublattices that interlock with an inorganic framework within a crystal offers a new synthetic tool for templating hybrid lattices with controlled distortion and orbital arrangement, overcoming limitations in conventional perovskites.

2.
Adv Mater ; : e1801720, 2018 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-29808501

RESUMEN

Photovoltaic (PV) materials such as perovskites and silicon are generally unabsorptive at wavelengths longer than 1100 nm, leaving a significant portion of the IR solar spectrum unharvested. Small-bandgap colloidal quantum dots (CQDs) are a promising platform to offer tandem complementary IR PV solutions. Today, the best performing CQD PVs use zinc oxide (ZnO) as an electron-transport layer. However, these electrodes require ultraviolet (UV)-light activation to overcome the low carrier density of ZnO, precluding the realization of CQD tandem photovoltaics. Here, a new sol-gel UV-free electrode based on Al/Cl hybrid doping of ZnO (CAZO) is developed. Al heterovalent doping provides a strong n-type character while Cl surface passivation leads to a more favorable band alignment for electron extraction. CAZO CQD IR solar cell devices exhibit, at wavelengths beyond the Si bandgap, an external quantum efficiency of 73%, leading to an additional 0.92% IR power conversion efficiency without UV activation. Conventional ZnO devices, on the other hand, add fewer than 0.01 power points at these operating conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA