Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Commun Biol ; 6(1): 1043, 2023 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-37833362

RESUMEN

Obesity adversely affects bone and fat metabolism in mice and humans. Omega-3 polyunsaturated fatty acids (omega-3 PUFAs) have been shown to improve glucose metabolism and bone homeostasis in obesity. However, the impact of omega-3 PUFAs on bone marrow adipose tissue (BMAT) and bone marrow stromal cell (BMSC) metabolism has not been intensively studied yet. In the present study we demonstrated that omega-3 PUFA supplementation in high fat diet (HFD + F) improved bone parameters, mechanical properties along with decreased BMAT in obese mice when compared to the HFD group. Primary BMSCs isolated from HFD + F mice showed decreased adipocyte and higher osteoblast differentiation with lower senescent phenotype along with decreased osteoclast formation suggesting improved bone marrow microenvironment promoting bone formation in mice. Thus, our study highlights the beneficial effects of omega-3 PUFA-enriched diet on bone and cellular metabolism and its potential use in the treatment of metabolic bone diseases.


Asunto(s)
Médula Ósea , Ácidos Grasos Omega-3 , Humanos , Ratones , Animales , Médula Ósea/metabolismo , Adiposidad , Huesos/metabolismo , Obesidad/complicaciones , Obesidad/prevención & control , Obesidad/metabolismo , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/metabolismo , Modelos Animales de Enfermedad
2.
Eur J Clin Invest ; 52(3): e13650, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34291454

RESUMEN

Prevalence of non-alcoholic fatty liver disease (NAFLD) increases in line with obesity and type 2 diabetes, and there is no approved drug therapy. Polyunsaturated fatty acids of n-3 series (omega-3) are known for their hypolipidaemic and anti-inflammatory effects. Existing clinical trials suggest varying effectiveness of triacylglycerol- or ethyl ester-bound omega-3 in the treatment of NAFLD, without affecting advanced stages such as non-alcoholic steatohepatitis. Preclinical studies suggest that the lipid class used to supplement omega-3 may determine the extent and nature of their effects on metabolism. Phospholipids of marine origin represent an alternative source of omega-3. The aim of this review is to summarise the available evidence on the use of omega-3 phospholipids, primarily in obesity-related NAFLD, and to outline perspectives of their use in the prevention/treatment of NAFLD. A PubMed literature search was conducted in May 2021. In total, 1088 articles were identified, but based on selection criteria, 38 original papers were included in the review. Selected articles describing the potential mechanisms of action of omega-3 phospholipids have also been included. Preclinical evidence clearly indicates that omega-3 phospholipids have strong antisteatotic effects in the liver, which are stronger compared to omega-3 administered as triacylglycerols. Multiple mechanisms are likely involved in the overall antisteatotic effects, involving not only the liver but also adipose tissue and the gut. Robust preclinical evidence for strong antisteatotic effects of omega-3 phospholipids in the liver should be confirmed in clinical trials. Further research is needed on the possible effects of omega-3 phospholipids on advanced NAFLD.


Asunto(s)
Ácidos Grasos Omega-3/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Obesidad/complicaciones , Humanos , Fosfolípidos
3.
Nutrients ; 13(2)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572810

RESUMEN

Preclinical evidence suggests that n-3 fatty acids EPA and DHA (Omega-3) supplemented as phospholipids (PLs) may be more effective than triacylglycerols (TAGs) in reducing hepatic steatosis. To further test the ability of Omega-3 PLs to alleviate liver steatosis, we used a model of exacerbated non-alcoholic fatty liver disease based on high-fat feeding at thermoneutral temperature. Male C57BL/6N mice were fed for 24 weeks a lard-based diet given either alone (LHF) or supplemented with Omega-3 (30 mg/g diet) as PLs (krill oil; ω3PL) or TAGs (Epax 3000TG concentrate; ω3TG), which had a similar total content of EPA and DHA and their ratio. Substantial levels of TAG accumulation (~250 mg/g) but relatively low inflammation/fibrosis levels were achieved in the livers of control LHF mice. Liver steatosis was reduced by >40% in the ω3PL but not ω3TG group, and plasma ALT levels were markedly reduced (by 68%) in ω3PL mice as well. Krill oil administration also improved hepatic insulin sensitivity, and its effects were associated with high plasma adiponectin levels (150% of LHF mice) along with superior bioavailability of EPA, increased content of alkaloids stachydrine and trigonelline, suppression of lipogenic gene expression, and decreased diacylglycerol levels in the liver. This study reveals that in addition to Omega-3 PLs, other constituents of krill oil, such as alkaloids, may contribute to its strong antisteatotic effects in the liver.


Asunto(s)
Suplementos Dietéticos , Aceites de Pescado/farmacología , Enfermedad del Hígado Graso no Alcohólico/terapia , Obesidad/terapia , Fosfolípidos/farmacología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Euphausiacea , Vivienda para Animales , Resistencia a la Insulina , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Obesidad/etiología
4.
Nutrients ; 12(12)2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33291653

RESUMEN

Long-chain n-3 polyunsaturated fatty acids (Omega-3) and anti-diabetic drugs thiazolidinediones (TZDs) exhibit additive effects in counteraction of dietary obesity and associated metabolic dysfunctions in mice. The underlying mechanisms need to be clarified. Here, we aimed to learn whether the futile cycle based on the hydrolysis of triacylglycerol and re-esterification of fatty acids (TAG/FA cycling) in white adipose tissue (WAT) could be involved. We compared Omega-3 (30 mg/g diet) and two different TZDs-pioglitazone (50 mg/g diet) and a second-generation TZD, MSDC-0602K (330 mg/g diet)-regarding their effects in C57BL/6N mice fed an obesogenic high-fat (HF) diet for 8 weeks. The diet was supplemented or not by the tested compound alone or with the two TZDs combined individually with Omega-3. Activity of TAG/FA cycle in WAT was suppressed by the obesogenic HF diet. Additive effects in partial rescue of TAG/FA cycling in WAT were observed with both combined interventions, with a stronger effect of Omega-3 and MSDC-0602K. Our results (i) supported the role of TAG/FA cycling in WAT in the beneficial additive effects of Omega-3 and TZDs on metabolism of diet-induced obese mice, and (ii) showed differential modulation of WAT gene expression and metabolism by the two TZDs, depending also on Omega-3.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos/metabolismo , Obesidad/metabolismo , Tiazolidinedionas/farmacología , Triglicéridos/metabolismo , Adipocitos/efectos de los fármacos , Animales , Dieta Alta en Grasa , Ácidos Grasos Omega-3/administración & dosificación , Hipoglucemiantes/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/tratamiento farmacológico , Pioglitazona/farmacología , Tiazolidinedionas/administración & dosificación
5.
Nutrients ; 12(7)2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32660007

RESUMEN

Antisteatotic effects of omega-3 fatty acids (Omega-3) in obese rodents seem to vary depending on the lipid form of their administration. Whether these effects could reflect changes in intestinal metabolism is unknown. Here, we compare Omega-3-containing phospholipids (krill oil; ω3PL-H) and triacylglycerols (ω3TG) in terms of their effects on morphology, gene expression and fatty acid (FA) oxidation in the small intestine. Male C57BL/6N mice were fed for 8 weeks with a high-fat diet (HFD) alone or supplemented with 30 mg/g diet of ω3TG or ω3PL-H. Omega-3 index, reflecting the bioavailability of Omega-3, reached 12.5% and 7.5% in the ω3PL-H and ω3TG groups, respectively. Compared to HFD mice, ω3PL-H but not ω3TG animals had lower body weight gain (-40%), mesenteric adipose tissue (-43%), and hepatic lipid content (-64%). The highest number and expression level of regulated intestinal genes was observed in ω3PL-H mice. The expression of FA ω-oxidation genes was enhanced in both Omega-3-supplemented groups, but gene expression within the FA ß-oxidation pathway and functional palmitate oxidation in the proximal ileum was significantly increased only in ω3PL-H mice. In conclusion, enhanced intestinal FA oxidation could contribute to the strong antisteatotic effects of Omega-3 when administered as phospholipids to dietary obese mice.


Asunto(s)
Dieta Alta en Grasa , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos/metabolismo , Mucosa Intestinal/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Fosfolípidos/administración & dosificación , Triglicéridos/administración & dosificación , Animales , Glucemia/análisis , Peso Corporal , Membrana Eritrocítica/metabolismo , Euphausiacea , Intestinos/anatomía & histología , Masculino , Ratones Obesos , Aceites , Oxidación-Reducción
6.
Artículo en Inglés | MEDLINE | ID: mdl-32371092

RESUMEN

Omega-3 polyunsatuarted fatty acids (PUFA) are associated with hypolipidemic and anti-inflammatory effects. However, omega-3 PUFA, usually administered as triacylglycerols or ethyl esters, could also compromise glucose metabolism, especially in obese type 2 diabetics. Phospholipids represent an alternative source of omega-3 PUFA, but their impact on glucose homeostasis is poorly explored. Male C57BL/6N mice were fed for 8 weeks a corn oil-based high-fat diet (cHF) alone or cHF-based diets containing eicosapentaenoic acid and docosahexaenoic acid (~3%; wt/wt), admixed either as a concentrate of re-esterified triacylglycerols (ω3TG) or Krill oil containing mainly phospholipids (ω3PL). Lean controls were fed a low-fat diet. Insulin sensitivity (hyperinsulinemic-euglycemic clamps), parameters of glucose homeostasis, adipose tissue function, and plasma levels of N-acylethanolamines, monoacylglycerols and fatty acids were determined. Feeding cHF induced obesity and worsened (~4.3-fold) insulin sensitivity as determined by clamp. Insulin sensitivity was almost preserved in ω3PL but not ω3TG mice. Compared with cHF mice, endogenous glucose production was reduced to 47%, whereas whole-body and muscle glycogen synthesis increased ~3-fold in ω3PL mice that showed improved adipose tissue function and elevated plasma adiponectin levels. Besides eicosapentaenoic and docosapentaenoic acids, principal component analysis of plasma fatty acids identified palmitoleic acid (C16:1n-7) as the most discriminating analyte whose levels were increased in ω3PL mice and correlated negatively with the degree of cHF-induced glucose intolerance. While palmitoleic acid from Krill oil may help improve glucose homeostasis, our findings provide a general rationale for using omega-3 PUFA-containing phospholipids as nutritional supplements with potent insulin-sensitizing effects.


Asunto(s)
Ácidos Grasos Monoinsaturados/sangre , Glucosa/metabolismo , Homeostasis , Aceites de Plantas/metabolismo , Animales , Dieta Alta en Grasa , Suplementos Dietéticos , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Fosfolípidos/administración & dosificación , Fosfolípidos/metabolismo
7.
Mar Drugs ; 16(12)2018 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-30567329

RESUMEN

We found previously that white adipose tissue (WAT) hyperplasia in obese mice was limited by dietary omega-3 polyunsaturated fatty acids (omega-3 PUFA). Here we aimed to characterize the underlying mechanism. C57BL/6N mice were fed a high-fat diet supplemented or not with omega-3 PUFA for one week or eight weeks; mice fed a standard chow diet were also used. In epididymal WAT (eWAT), DNA content was quantified, immunohistochemical analysis was used to reveal the size of adipocytes and macrophage content, and lipidomic analysis and a gene expression screen were performed to assess inflammatory status. The stromal-vascular fraction of eWAT, which contained most of the eWAT cells, except for adipocytes, was characterized using flow cytometry. Omega-3 PUFA supplementation limited the high-fat diet-induced increase in eWAT weight, cell number (DNA content), inflammation, and adipocyte growth. eWAT hyperplasia was compromised due to the limited increase in the number of preadipocytes and a decrease in the number of endothelial cells. The number of leukocytes and macrophages was unaffected, but a shift in macrophage polarization towards a less inflammatory phenotype was observed. Our results document that the counteraction of eWAT hyperplasia by omega-3 PUFA in dietary-obese mice reflects an effect on the number of adipose lineage and endothelial cells.


Asunto(s)
Adipocitos/efectos de los fármacos , Tejido Adiposo Blanco/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Ácidos Grasos Omega-3/administración & dosificación , Adipocitos/citología , Animales , Proliferación Celular/efectos de los fármacos , Dieta Alta en Grasa , Inflamación/patología , Macrófagos/efectos de los fármacos , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL
8.
PLoS One ; 7(8): e43764, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22952760

RESUMEN

Insulin resistance, the key defect in type 2 diabetes (T2D), is associated with a low capacity to adapt fuel oxidation to fuel availability, i.e., metabolic inflexibility. This, in turn, contributes to a further damage of insulin signaling. Effectiveness of T2D treatment depends in large part on the improvement of insulin sensitivity and metabolic adaptability of the muscle, the main site of whole-body glucose utilization. We have shown previously in mice fed an obesogenic high-fat diet that a combined use of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) and thiazolidinediones (TZDs), anti-diabetic drugs, preserved metabolic health and synergistically improved muscle insulin sensitivity. We investigated here whether n-3 LC-PUFA could elicit additive beneficial effects on metabolic flexibility when combined with a TZD drug rosiglitazone. Adult male C57BL/6N mice were fed an obesogenic corn oil-based high-fat diet (cHF) for 8 weeks, or randomly assigned to various interventions: cHF with n-3 LC-PUFA concentrate replacing 15% of dietary lipids (cHF+F), cHF with 10 mg rosiglitazone/kg diet (cHF+ROSI), cHF+F+ROSI, or chow-fed. Indirect calorimetry demonstrated superior preservation of metabolic flexibility to carbohydrates in response to the combined intervention. Metabolomic and gene expression analyses in the muscle suggested distinct and complementary effects of the interventions, with n-3 LC-PUFA supporting complete oxidation of fatty acids in mitochondria and the combination with n-3 LC-PUFA and rosiglitazone augmenting insulin sensitivity by the modulation of branched-chain amino acid metabolism. These beneficial metabolic effects were associated with the activation of the switch between glycolytic and oxidative muscle fibers, especially in the cHF+F+ROSI mice. Our results further support the idea that the combined use of n-3 LC-PUFA and TZDs could improve the efficacy of the therapy of obese and diabetic patients.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Ácidos Grasos Omega-3/farmacología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Tiazolidinedionas/farmacología , Animales , Sinergismo Farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Glucólisis/efectos de los fármacos , Masculino , Metabolómica , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Oxidación-Reducción/efectos de los fármacos , Rosiglitazona
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA