Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanoscale ; 15(5): 2262-2275, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36630186

RESUMEN

The incorporation of nanomaterials into consumer products has substantially increased in recent years, raising concerns about their safety. The inherent physicochemical properties of nanoparticles allow them to cross epithelial barriers and gain access to immunocompetent cells. Nanoparticles in cosmetic products can potentially interact with environmental allergens, forming a protein corona, and together penetrate through damaged skin. Allergen-nanoparticle interactions may influence the immune response, eventually resulting in an adverse or beneficial outcome in terms of allergic reactivity. This study determines the impact of silica nanoparticle-allergen interactions on allergic sensitization by studying the major molecular mechanisms affecting allergic responses. The major birch pollen allergen Bet v 1 was chosen as a model allergen and the birch pollen extract as a comparator. Key events in immunotoxicity including allergen uptake, processing, presentation, expression of costimulatory molecules and cytokine release were studied in human monocyte-derived dendritic cells. Using an in vivo sensitization model, murine Bet v 1-specific IgG and IgE levels were monitored. Upon the interaction of allergens with silica nanoparticles, we observed an enhanced uptake of the allergen by macropinocytosis, improved proteolytic processing, and presentation concomitant with a propensity to increase allergen-specific IgG2a and decrease IgE antibody levels. Together, these events suggest that upon nanoparticle interactions the immune response is biased towards a type 1 inflammatory profile, characterized by the upregulation of T helper 1 (Th1) cells. In conclusion, the interaction of the birch pollen allergen with silica nanoparticles will not worsen allergic sensitization, a state of type 2-inflammation, but rather seems to decrease it by skewing towards a Th1-dominated immune response.


Asunto(s)
Hipersensibilidad , Nanopartículas , Humanos , Animales , Ratones , Alérgenos/análisis , Alérgenos/química , Polen/efectos adversos , Polen/química , Antígenos de Plantas/análisis , Antígenos de Plantas/química , Células Presentadoras de Antígenos , Betula , Inmunoglobulina E/análisis
2.
Eur J Immunol ; 51(1): 191-196, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32648940

RESUMEN

Interleukin-31 (IL-31) is a Th2 cell-derived cytokine that has been closely linked to pruritic skin inflammation. More recently, enhanced IL-31 serum levels have also been observed in patients with allergic rhinitis and allergic asthma. Therefore, the main aim of this study was to unravel the contribution of IL-31 to allergen-induced lung inflammation. We analyzed lung inflammation in response to the timothy grass (Phleum pratense) pollen allergen Phl p 5 in C57BL/6 wild-type (wt) mice, IL-31 transgenic (IL-31tg) mice, and IL-31 receptor alpha-deficient animals (IL-31RA-/- ). IL-31 and IL-31RA levels were monitored by qRT-PCR. Cellular infiltrate in bronchoalveolar lavage fluid (BALF) and lung tissue inflammation, mucus production as well as epithelial thickness were measured by flow cytometry and histomorphology. While allergen challenge induced IL-31RA expression in lung tissue of wt and IL-31tg mice, high IL-31 expression was exclusively observed in lung tissue of IL-31tg mice. Upon Phl p 5 challenge, IL-31tg mice showed reduced numbers of leukocytes and eosinophils in BALF and lung tissue as well as diminished mucin expression and less pronounced epithelial thickening compared to IL-31RA-/- or wt animals. These findings suggest that the IL-31/IL-31RA axis may regulate local, allergen-induced inflammation in the lungs.


Asunto(s)
Alérgenos/efectos adversos , Alérgenos/inmunología , Interleucinas/inmunología , Proteínas de Plantas/efectos adversos , Proteínas de Plantas/inmunología , Neumonía/inmunología , Animales , Asma/etiología , Asma/inmunología , Asma/prevención & control , Líquido del Lavado Bronquioalveolar/inmunología , Modelos Animales de Enfermedad , Eosinófilos/inmunología , Femenino , Interleucinas/genética , Leucocitos/inmunología , Pulmón/inmunología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Phleum/efectos adversos , Phleum/inmunología , Neumonía/etiología , Neumonía/prevención & control , Polen/efectos adversos , Polen/inmunología , Receptores de Interleucina/deficiencia , Receptores de Interleucina/genética , Receptores de Interleucina/inmunología
4.
J Allergy Clin Immunol ; 137(5): 1525-34, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26559323

RESUMEN

BACKGROUND: The search for intrinsic factors, which account for a protein's capability to act as an allergen, is ongoing. Fold stability has been identified as a molecular feature that affects processing and presentation, thereby influencing an antigen's immunologic properties. OBJECTIVE: We assessed how changes in fold stability modulate the immunogenicity and sensitization capacity of the major birch pollen allergen Bet v 1. METHODS: By exploiting an exhaustive virtual mutation screening, we generated mutants of the prototype allergen Bet v 1 with enhanced thermal and chemical stability and rigidity. Structural changes were analyzed by means of x-ray crystallography, nuclear magnetic resonance, and molecular dynamics simulations. Stability was monitored by using differential scanning calorimetry, circular dichroism, and Fourier transform infrared spectroscopy. Endolysosomal degradation was simulated in vitro by using the microsomal fraction of JAWS II cells, followed by liquid chromatography coupled to mass spectrometry. Immunologic properties were characterized in vitro by using a human T-cell line specific for the immunodominant epitope of Bet v 1 and in vivo in an adjuvant-free BALB/c mouse model. RESULTS: Fold stabilization of Bet v 1 was pH dependent and resulted in resistance to endosomal degradation at a pH of 5 or greater, affecting presentation of the immunodominant T-cell epitope in vitro. These properties translated in vivo into a strong allergy-promoting TH2-type immune response. Efficient TH2 cell activation required both an increased stability at the pH of the early endosome and efficient degradation at lower pH in the late endosomal/lysosomal compartment. CONCLUSIONS: Our data indicate that differential pH-dependent fold stability along endosomal maturation is an essential protein-inherent determinant of allergenicity.


Asunto(s)
Alérgenos/química , Antígenos de Plantas/química , Alérgenos/genética , Alérgenos/inmunología , Animales , Antígenos de Plantas/genética , Antígenos de Plantas/inmunología , Endosomas , Femenino , Concentración de Iones de Hidrógeno , Inmunoglobulina E/inmunología , Inmunoglobulina G/inmunología , Ratones Endogámicos BALB C , Mutación , Polen/inmunología , Pliegue de Proteína , Estabilidad Proteica
5.
PLoS One ; 9(8): e104520, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25126882

RESUMEN

Allergy prevalence has increased in industrialized countries. One contributing factor could be pollution, which can cause nitration of allergens exogenously (in the air) or endogenously (in inflamed lung tissue). We investigated the impact of nitration on both the structural and immunological behavior of the major birch pollen allergen Bet v 1.0101 to determine whether nitration might be a factor in the increased incidence of allergy. Bet v 1.0101 was nitrated with tetranitromethane. Immune effects were assessed by measuring the proliferation of specific T-cell lines (TCLs) upon stimulation with different concentrations of nitrated and unmodified allergen, and by measurement of cytokine release of monocyte-derived dendritic cells (moDCs) and primary DCs (primDCs) stimulated with nitrated versus unmodified allergen. HPLC-MS, crystallography, gel electrophoresis, amino acid analysis, size exclusion chromatography and molecular dynamics simulation were performed to characterize structural changes after nitration of the allergen. The proliferation of specific TCLs was higher upon stimulation with the nitrated allergen in comparison to the unmodified allergen. An important structural consequence of nitration was oligomerization. Moreover, analysis of the crystal structure of nitrated Bet v 1.0101 showed that amino acid residue Y83, located in the hydrophobic cavity, was nitrated to 100%. Both moDCs and primDCs showed decreased production of TH1-priming cytokines, thus favoring a TH2 response. These results implicate that nitration of Bet v 1.0101 might be a contributing factor to the observed increase in birch pollen allergy, and emphasize the importance of protein modifications in understanding the molecular basis of allergenicity.


Asunto(s)
Antígenos de Plantas/química , Antígenos de Plantas/inmunología , Polen/inmunología , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Humanos , Activación de Linfocitos/inmunología , Lisosomas/metabolismo , Modelos Moleculares , Monocitos/inmunología , Monocitos/metabolismo , Conformación Proteica , Multimerización de Proteína , Proteolisis , Rinitis Alérgica Estacional/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA