Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-36225186

RESUMEN

Convolvulus pluricaulis (CP), a Medhya Rasayana (nootropic) herb, is a major ingredient in Ayurvedic and Traditional Chinese formulae indicated for neurological conditions, namely, dementia, anxiety, depression, insanity, and epilepsy. Experimental evidence suggests various neuroactive potentials of CP such as memory-enhancing, neuroprotective, and antiepileptic. However, precise mechanisms underlying the neuropharmacological effects of CP remain unclear. The study, therefore, aimed at deciphering the molecular basis of neuroprotective effects of CP phytochemicals against the pathology of dementia disorders such as Alzheimer's (AD) and Parkinson's (PD) disease. The study exploited bioinformatics tools and resources, such as Cytoscape, DAVID (Database for annotation, visualization, and integrated discovery), NetworkAnalyst, and KEGG (Kyoto Encyclopedia of Genes and Genomes) database to investigate the interaction between CP compounds and molecular targets. An in silico analysis was also employed to screen druglike compounds and validate some selective interactions. ADME (absorption, distribution, metabolism, and excretion) analysis predicted a total of five druglike phytochemicals from CP constituents, namely, scopoletin, 4-hydroxycinnamic acid, kaempferol, quercetin, and ayapanin. In network analysis, these compounds were found to interact with some molecular targets such as prostaglandin G/H synthase 1 and 2 (PTGS1 and PTGS2), endothelial nitric oxide synthase (NOS3), insulin receptor (INSR), heme oxygenase 1 (HMOX1), acetylcholinesterase (ACHE), peroxisome proliferator-activated receptor-gamma (PPARG), and monoamine oxidase A and B (MAOA and MAOB) that are associated with neuronal growth, survival, and activity. Docking simulation further confirmed interaction patterns and binding affinity of selected CP compounds with those molecular targets. Notably, scopoletin showed the highest binding affinity with PTGS1, NOS3, PPARG, ACHE, MAOA, MAOB, and TRKB, quercetin with PTGS2, 4-hydroxycinnamic acid with INSR, and ayapanin with HMOX1. The findings indicate that scopoletin, kaempferol, quercetin, 4-hydroxycinnamic acid, and ayapanin are the main active constituents of CP which might account for its memory enhancement and neuroprotective effects and that target proteins such as PTGS1, PTGS2, NOS3, PPARG, ACHE, MAOA, MAOB, INSR, HMOX1, and TRKB could be druggable targets against dementia.

2.
Front Pharmacol ; 13: 925993, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910356

RESUMEN

Kidney diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD), have become critical clinical, socioeconomic, and public health concerns worldwide. The kidney requires a lot of energy, and mitochondria act as the central organelle for the proper functioning of the kidney. Mitochondrial dysfunction has been associated with the pathogenesis of AKI and CKD. Natural products and their structural analogs have been sought as an alternative therapeutic strategy despite the challenges in drug discovery. Many studies have shown that small-molecule natural products can improve renal function and ameliorate kidney disease progression. This review summarizes the nephroprotective effects of small-molecule natural products, such as berberine, betulinic acid, celastrol, curcumin, salidroside, polydatin, and resveratrol. Treatment with small-molecule natural products was shown to attenuate renal oxidative stress and mitochondrial DNA (mtDNA) damage and restore mitochondrial biogenesis and dynamics in the kidneys against various injury stimuli. Therefore, small-molecule natural products should be recognized as multi-target therapeutics and promising drugs to prevent kidney diseases, particularly those with mitochondrial dysfunction.

3.
J Ethnopharmacol ; 293: 115251, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35381310

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Gastritis can lead to ulcers and the development of gastric cancer. The rhizome of Atractylodes macrocephala Koidz. (Asteraceae), a traditional Chinese medicinal herb, is prescribed for the treatment of gastric disorders, hepatitis and rheumatism. Its bio-active compounds are considered to be particularly effective in this regard. However, the molecular processes of the herb's anti-inflammatory activity remain obscure. This study elucidates a mechanism upon which an ethanolic extract of this herb (Am-EE) exerts anti-inflammation effects in RAW264.7 macrophage cells (RAW cells) stimulated by lipopolysaccharide (LPS) treatment and HCl Ethanol-stimulated gastritis rats. AIM OF THE STUDY: To investigate the anti-gastritis activities of Am-EE and explore the mode of action. MATERIALS AND METHODS: Ethanol (95%) was used to prepare Am-EE. The quality of the extract was monitored by HPLC analysis. The in vivo effects of this extract were examined in an HCl Ethanol-stimulated gastritis rat model, while LPS-stimulated RAW cells were used for in vitro assays. Cell viability and nitric oxide (NO) production were observed by MTT and Griess assays. Real-time PCR was used to examine mRNA expression. The PGE2 ELISA kit was employed to detect prostaglandin E2 (PGE2). Enzyme activities and protein contents were examined by immunoblotting. Luciferase reporter gene assays (LRA) were employed to observe nuclear transcription factor (NF)-κB activity. The SPSS (SPSS Inc., Chicago, Illinois, United States) application was used for statistical examination. RESULTS: HPLC analysis indicates that Am-EE contains atractylenolide-1 (AT-1, 1.33%, w/w) and atractylenolide-2 (AT-2, 1.25%, w/w) (Additional Figure. A1). Gastric tissue damage (induced by HCl Ethanol) was significantly decreased in SD rats following intra-gastric application of 35 mg/kg Am-EE. Indistinguishable to the anti-inflammation effects of 35 mg/kg ranitidine (gastric medication). Am-EE treatment also reduced LPS-mediated nitric oxide (NO) and prostaglandin E2 (PGE2) production. The mRNA and protein synthesis of inducible cyclooxygenase (COX)-2 and NO synthase (iNOS) was down-regulated following treatment in RAW cells. Am-EE decreased NF-κB (p50) nuclear protein levels and inhibited NF-κB-stimulated LRA activity in RAW cells. Lastly, Am-EE decreased the up-regulated levels of phosphorylated IκBα and Akt proteins in rat stomach lysates and in LPS challenged RAW cell samples. CONCLUSION: Our study illustrates that Am-EE suppresses the Akt/IκBα/NF-κB pathway and exerts an anti-inflammatory effect. These novel conclusions provide a pharmacological basis for the clinical use of the A. macrocephala rhizome in the treatment and prevention of gastritis and gastric cancer.


Asunto(s)
Atractylodes , Gastritis , Extractos Vegetales , Neoplasias Gástricas , Animales , Antiinflamatorios/farmacología , Atractylodes/química , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Etanol/uso terapéutico , Gastritis/inducido químicamente , Gastritis/tratamiento farmacológico , Lipopolisacáridos/toxicidad , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Rizoma/química , Neoplasias Gástricas/tratamiento farmacológico
4.
J Ethnopharmacol ; 277: 114183, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-33991638

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The dried rhizome of Atractylodes lancea (Thumb.) DC. (Compositae) has been prescribed in folk medicine for the management of various inflammatory conditions such as rheumatic diseases, gastritis and hepatitis. However, the molecular mechanisms underlying the beneficial properties of this herb remain elusive. AIM OF THE STUDY: In this study, we investigated the anti-gastritis activities of Al-EE (an ethanolic extract of the herb) and explored the mechanism of action. MATERIALS AND METHODS: An ethanolic extract of the Atractylodes lancea (Thumb.) DC. (Compositae) rhizome, Al-EE, was prepared with ethanol (95%) and quality controlled using HPLC analysis. To determine the in vivo effects of this extract, we utilised a HCl/EtOH-induced gastritis rat model. In vitro assays were carried out using a lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cell model. MTT assays were used to examine cell viability, while Griess assays were carried out to measure nitric oxide (NO) production. Messenger RNA expression was examined by real-time PCR. Prostaglandin E2 (PGE2) production was examined using ELISA assays. To examine protein expression and enzymatic activities, we employed western blot analysis. Nuclear transcription factor (NF)-κB activity was determined by Luciferase reporter assays. RESULTS: The content of atractylenolide (AT)-1 and AT-2 in Al-EE was 0.45% and 5.07% (w/w), respectively (Supplementary Fig. 1). Al-EE treatment suppressed the production of NO and PGE2, reduced the mRNA expression of inducible NO synthase (iNOS), cyclooxygenase (COX)-2 and tumor necrosis factor (TNF)-α, while also reducing the protein levels of iNOS and COX-2 in RAW264.7 macrophage cells. Furthermore, Al-EE inhibited the nuclear protein levels of NF-κB (p65) and NF-κB-driven luciferase reporter gene activity in RAW264.7 macrophage cells. Critically, intra-gastric injection of Al-EE (25 mg/kg) attenuated HCl/EtOH-induced gastric damage in SD rats, while the phosphorylation of Akt and IκBα was suppressed by Al-EE in vitro and in vivo. CONCLUSION: In summary, Al-EE has significant anti-gastritis effects in vivo and in vitro, which can be associated with the inhibition of the Akt/IκBα/NF-κB signalling pathway. This mechanistic finding provides a pharmacological basis for the use of the A. lancea rhizome in the clinical treatment of various inflammatory conditions.


Asunto(s)
Antiinflamatorios/farmacología , Atractylodes/química , Gastritis/tratamiento farmacológico , Extractos Vegetales/farmacología , Animales , Antiinflamatorios/aislamiento & purificación , Etanol/química , Gastritis/patología , Lipopolisacáridos , Macrófagos/efectos de los fármacos , Macrófagos/patología , Masculino , Ratones , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células RAW 264.7 , Ratas , Ratas Sprague-Dawley , Rizoma , Transducción de Señal/efectos de los fármacos
5.
J Ethnopharmacol ; 228: 18-25, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30218812

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The rhizome of Atractylodes chinensis (DC.) kodiz (Compositae) has traditionally been used to treat inflammatory disorders such as arthritis and stomach ache, but scanted report has been issued on its anti-inflammatory mechanisms. AIM OF THE STUDY: Here, we investigated the anti-gastritis activities and explored the mechanism of action of an ethanolic extract of the herb (Ac-EE). MATERIALS AND METHODS: Ac-EE was prepared with 95% ethanol. To determine its in vivo effects, we employed an HCl/EtOH-induced gastritis rat model. We used a lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage model for in vitro assays. Griess and MTT assays were used to measure nitric oxide (NO) production and cell viability, respectively. We used real-time PCR to determine mRNA levels. To measure prostaglandin E2 (PGE2) production we used a PGE2 EIA kit. To estimate protein levels and enzyme activities, we employed immunoblotting. Luciferase assays were used to examine nuclear transcription factor (NF)-κB activities. RESULTS: Intragastric administration of Ac-EE (30 mg/kg) ameliorated HCl/EtOH-induced stomach tissue damages in SD rats. Ac-EE inhibited the levels of NO and PGE2, down regulated mRNA and protein levels of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2. Ac-EE suppressed the nuclear level of NF-κB (p50), and inhibited NF-κB luciferase activity. The Phosphorylation of Akt and IκBα was also inhibited by Ac-EE both in vivo and in vitro. CONCLUSION: Ac-EE treatment exerts an anti-gastritis effect in rats. Inhibition of the Akt/IκBα/NF-κB signaling pathway is associated with this effect, providing a pharmacological basis for the clinical application of the rhizome of A. chinensis in the treatment of inflammatory diseases.


Asunto(s)
Atractylodes , Gastritis/tratamiento farmacológico , FN-kappa B/antagonistas & inhibidores , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Animales , Dinoprostona/metabolismo , Etanol/química , Gastritis/inducido químicamente , Gastritis/patología , Ácido Clorhídrico , Masculino , Ratones , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Fitoterapia , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células RAW 264.7 , Ratas Sprague-Dawley , Rizoma/química , Transducción de Señal/efectos de los fármacos , Solventes/química
6.
Sci Rep ; 7: 42995, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-28216638

RESUMEN

Thymoquinone (TQ) is a bioactive component of black seed (Nigella sativa) volatile oil and has been shown to have anti-oxidative, anti-inflammatory, and anti-cancer properties. In the present study, we explored the molecular mechanisms that underlie the anti-inflammatory effect of TQ and its target proteins using lipopolysaccharide (LPS)-stimulated murine macrophage-like RAW264.7 and human monocyte-like U937 cells, together with LPS/D-galactosamine (GalN)-induced acute hepatitis and HCl/EtOH-induced gastritis mouse models. TQ strongly inhibited the production of nitric oxide (NO) and repressed NO synthase (iNOS), tumor necrosis factor (TNF)-α, cyclooxygenase (COX)-2, interleukin (IL)-6, and IL-1ß expression in LPS-activated RAW264.7 cells. Treatment of LPS/D-GalN-induced hepatitis and EtOH/HCl-induced gastritis mouse models with TQ significantly ameliorated disease symptoms. Using luciferase reporter gene assays, we also showed that the nuclear levels of transcription factors and phosphorylation patterns of signaling proteins, activator protein (AP)-1, and nuclear factor (NF)-κB pathways were all affected by TQ treatment. Finally, we used additional kinase and luciferase validation assays with interleukin-1 receptor-associated kinase 1 (IRAK1) to show that IRAK1 is directly suppressed by TQ treatment. Together, these findings strongly suggest that the anti-inflammatory actions of TQ are caused by suppression of IRAK-linked AP-1/NF-κB pathways.


Asunto(s)
Antiinflamatorios/uso terapéutico , Benzoquinonas/farmacología , Gastritis/tratamiento farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Quinasas Asociadas a Receptores de Interleucina-1/antagonistas & inhibidores , Nigella sativa/química , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Benzoquinonas/química , Benzoquinonas/uso terapéutico , Línea Celular , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Gastritis/patología , Gastritis/veterinaria , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Lipopolisacáridos/toxicidad , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , FN-kappa B/metabolismo , Nigella sativa/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fosforilación/efectos de los fármacos , Células RAW 264.7 , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
7.
Am J Chin Med ; 44(6): 1111-1125, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27627914

RESUMEN

Xanthium strumarium L. (Asteraceae), a traditional Chinese medicine, is prescribed to treat arthritis, bronchitis, and rhinitis. Although the plant has been used for many years, the mechanism by which it ameliorates various inflammatory diseases is not yet fully understood. To explore the anti-inflammatory mechanism of methanol extracts of X. strumarium (Xs-ME) and its therapeutic potential, we used lipopolysaccharide (LPS)-stimulated murine macrophage-like RAW264.7 cells and human monocyte-like U937 cells as well as a LPS/D-galactosamine (GalN)-induced acute hepatitis mouse model. To find the target inflammatory pathway, we used holistic immunoblotting analysis, reporter gene assays, and mRNA analysis. Xs-ME significantly suppressed the up-regulation of both the activator protein (AP)-1-mediated luciferase activity and the production of LPS-induced proinflammatory cytokines, including interleukin (IL)-1[Formula: see text], IL-6, and tumor necrosis factor (TNF)-[Formula: see text]. Moreover, Xs-ME strongly inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) in LPS-stimulated RAW264.7 and U937 cells. Additionally, these results highlighted the hepatoprotective and curative effects of Xs-ME in a mouse model of LPS/D-GalN-induced acute liver injury, as assessed by elevated serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and histological damage. Therefore, our results strongly suggest that the ethnopharmacological roles of Xs-ME in hepatitis and other inflammatory diseases might result from its inhibitory activities on the inflammatory signaling of MAPK and AP-1.


Asunto(s)
Antiinflamatorios , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Citocinas/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/fisiología , Terapia Molecular Dirigida , Fitoterapia , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/fisiología , Xanthium/química , Enfermedad Aguda , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Mediadores de Inflamación/metabolismo , Masculino , Medicina Tradicional China , Ratones , Ratones Endogámicos C57BL , Extractos Vegetales/aislamiento & purificación , Células RAW 264.7 , Transducción de Señal/fisiología , Células U937
8.
J Ethnopharmacol ; 190: 251-60, 2016 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-27286918

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Xanthium strumarium L. (Asteraceae) has traditionally been used to treat bacterial infections, nasal sinusitis, urticaria, arthritis, chronic bronchitis and rhinitis, allergic rhinitis, edema, lumbago, and other ailments. However, the molecular mechanisms by which this plant exerts its anti-inflammatory effects are poorly characterized. Here we studied the immunopharmacological activities of the methanolic extract of the aerial parts of this plant (Xs-ME) and validated its pharmacological targets. MATERIALS AND METHODS: To evaluate the anti-inflammatory activity of Xs-ME, we employed lipopolysaccharide (LPS)-treated macrophages and an HCl/EtOH-induced mouse model of gastritis. We also used HPLC to identify the potentially active anti-inflammatory components of this extract. The molecular mechanisms of its anti-inflammatory activity were studied by kinase assays, reporter gene assays, immunoprecipitation analysis, and overexpression of target enzymes. RESULTS: The production of nitric oxide (NO) and prostaglandin E2 (PGE2) were both suppressed by Xs-ME. Moreover, orally administered Xs-ME ameliorated HCl/EtOH-induced gastric lesions. Furthermore, this extract downregulated the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 and reduced the nuclear levels of NF-κB. Signaling events upstream of NF-κB translocation, such as phosphorylation of AKT and the formation of PDK1-AKT signaling complexes, were also inhibited by Xs-ME. Moreover, Xs-ME suppressed the enzymatic activity of PDK1. Additionally, PDK1-induced luciferase activity and Akt phosphorylation were both inhibited by Xs-ME. We also identified the polyphenol resveratrol as a likely active anti-inflammatory component in Xs-ME that targets PDK1. CONCLUSION: Xs-ME exerts anti-inflammatory activity in vitro and in vivo by inhibiting PDK1 kinase activity and blocking signaling to its downstream transcription factor, NF-κB.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido/antagonistas & inhibidores , Antiinflamatorios/farmacología , Gastritis/prevención & control , Macrófagos/efectos de los fármacos , Metanol/química , FN-kappa B/metabolismo , Extractos Vegetales/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Solventes/química , Xanthium/química , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/genética , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Animales , Antiinflamatorios/aislamiento & purificación , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Etanol , Gastritis/inducido químicamente , Gastritis/enzimología , Gastritis/genética , Células HEK293 , Humanos , Ácido Clorhídrico , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , FN-kappa B/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fosforilación , Fitoterapia , Componentes Aéreos de las Plantas/química , Extractos Vegetales/aislamiento & purificación , Plantas Medicinales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células RAW 264.7 , Factores de Tiempo , Transfección
9.
Phytother Res ; 30(3): 347-56, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26931614

RESUMEN

Codonopsis lanceolata (Campanulaceae) is dicotyledonous herbaceous perennial plant, predominantly found in Central, East, and South Asia. This plant has been widely used in traditional medicine and is considered to have medicinal properties to treat diseases and symptoms such as bronchitis, coughs, spasm, psychoneurosis, cancer, obesity, hyperlipidemia, edema, hepatitis, colitis, and lung injury. C. lanceolata contains many biologically active compounds, including polyphenols, saponins, tannins, triterpene, alkaloids, and steroids, which contribute to its numerous pharmacological activities. Through systematic studies, the pharmacological actions of these compounds have been revealed. Therapeutic potentialities of C. lanceolata and its previously reported molecular mechanisms are described in this review.


Asunto(s)
Alcaloides/uso terapéutico , Codonopsis/química , Fitoterapia , Extractos Vegetales/uso terapéutico , Polifenoles/uso terapéutico , Saponinas/uso terapéutico , Triterpenos/uso terapéutico , Alcaloides/farmacología , Humanos , Medicina Tradicional , Extractos Vegetales/farmacología , Polifenoles/farmacología , Saponinas/farmacología , Triterpenos/farmacología
10.
Am J Chin Med ; 43(6): 1137-58, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26381032

RESUMEN

Traditionally, Phyllanthus acidus (Phyllanthaceae) has been used for the treatment of rheumatism, bronchitis, asthma, respiratory disorders, and hepatitis. Recently, we showed that a methanol extract of Phyllanthaceae (Pa-ME) has a potent anti-inflammatory activity in RAW264.7 cells and strongly ameliorates HCl / EtOH -induced gastric ulcers in mice by targeting the Src/Syk of NF-κB. In the present study, we explored the molecular mechanism of Pa-ME on the AP-1 activation pathway and evaluated its potential hepatoprotective effects. To do this, we employed lipopolysaccharide (LPS)-stimulated RAW264.7 cells and U937 cells and an LPS/D-galactosamine (D- GaIN )-induced acute hepatitis mouse model. We utilized a multitude of assays, including immunoblotting analysis, reporter gene assays, and mRNA expression analysis, to determine the effect of Pa-ME on the AP-1 pathway. Pa-ME strikingly suppressed the production of LPS-induced pro-inflammatory cytokines including interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF-α). Furthermore, Pa-ME also strongly inhibited activator protein-1 (AP-1) activation and mitogen-activated protein kinase (MAPK) phosphorylation in LPS-stimulated RAW264.7 macrophages cells and the U937 monocyte like human cell line. Moreover, pre-treatment with Pa-ME exhibited strong hepatoprotective and curative effects in an LPS/D-Gal-induced mouse hepatitis model as evidenced by a decrease in elevated serum AST and ALT levels and the amelioration of histological damage. Taken together, our data suggest that Pa-ME might play a crucial ethnopharmacological role as a hepatoprotective herbal remedy by suppressing MAPK signaling and the activity of the downstream transcription factor AP-1.


Asunto(s)
Antiinflamatorios/administración & dosificación , Hepatitis/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Phyllanthus/química , Extractos Vegetales/administración & dosificación , Factor de Transcripción AP-1/antagonistas & inhibidores , Animales , Galactosamina/efectos adversos , Hepatitis/genética , Hepatitis/inmunología , Humanos , Interleucina-1/genética , Interleucina-1/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Lipopolisacáridos/efectos adversos , Hígado/efectos de los fármacos , Hígado/inmunología , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/genética , FN-kappa B/inmunología , Células RAW 264.7 , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/inmunología , Células U937
11.
Artículo en Inglés | MEDLINE | ID: mdl-25878717

RESUMEN

In traditional Chinese medicine, Persicaria chinensis L. has been prescribed to cure numerous inflammatory disorders. We previously analyzed the bioactivity of the methanol extract of this plant (Pc-ME) against LPS-induced NO and PGE2 in RAW264.7 macrophages and found that it prevented HCl/EtOH-induced gastric ulcers in mice. The purpose of the current study was to explore the molecular mechanism by which Pc-ME inhibits activator protein- (AP-) 1 activation pathway and mediates its hepatoprotective activity. To investigate the putative therapeutic properties of Pc-ME against AP-1-mediated inflammation and hepatotoxicity, lipopolysaccharide- (LPS-) stimulated RAW264.7 and U937 cells, a monocyte-like human cell line, and an LPS/D-galactosamine- (D-GalN-) induced acute hepatitis mouse model were employed. The expression of LPS-induced proinflammatory cytokines including interleukin- (IL-) 1ß, IL-6, and tumor necrosis factor-α (TNF-α) was significantly diminished by Pc-ME. Moreover, Pc-ME reduced AP-1 activation and mitogen-activated protein kinase (MAPK) phosphorylation in both LPS-stimulated RAW264.7 cells and differentiated U937 cells. Additionally, we highlighted the hepatoprotective and curative effects of Pc-ME pretreated orally in a mouse model of LPS/D-GalN-intoxicated acute liver injury by demonstrating the significant reduction in elevated serum AST and ALT levels and histological damage. Therefore, these results strongly suggest that Pc-ME could function as an antihepatitis remedy suppressing MAPK/AP-1-mediated inflammatory events.

12.
J Ethnopharmacol ; 168: 217-28, 2015 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-25839115

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Phyllanthus acidus (L.) Skeels (Phyllanthaceae) has traditionally been used to treat gastric trouble, rheumatism, bronchitis, asthma, respiratory disorders, and hepatitis. Despite this widespread use, the pharmacological activities of this plant and their molecular mechanisms are poorly understood. Therefore, we evaluated the immunopharmacological activities of the methanolic extract of the aerial parts of this plant (Pa-ME) and validated its pharmacological targets. MATERIALS AND METHODS: Lipopolysaccharide (LPS)-treated macrophages, an HCl/EtOH-induced gastritis model, and an acetic acid-injected capillary permeability mouse model were employed to evaluate the anti-inflammatory activity of Pa-ME. Potentially active anti-inflammatory components of this extract were identified by HPLC. The molecular mechanisms of the anti-inflammatory activity were studied by kinase assays, reporter gene assays, immunoprecipitation analysis, and overexpression of target enzymes. RESULTS: Pa-ME suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2) and prevented morphological changes in LPS-treated RAW264.7 cells. Moreover, both HCl/EtOH-induced gastric damage and acetic acid-triggered vascular permeability were restored by orally administered Pa-ME. Furthermore, this extract downregulated the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 and reduced the nuclear levels of NF-κB. Signalling events upstream of NF-κB translocation, such as phosphorylation of Src and Syk and formation of Src/Syk signalling complexes, were also inhibited by Pa-ME. The enzymatic activities of Src and Syk were also suppressed by Pa-ME. Moreover, Src-induced and Syk-induced luciferase activity and p85/Akt phosphorylation were also inhibited by Pa-ME. Of the identified flavonoids, kaempferol and quercetin were revealed as partially active anti-inflammatory components in Pa-ME. CONCLUSION: Pa-ME exerts anti-inflammatory activity in vitro and in vivo by suppressing Src, Syk, and their downstream transcription factor, NF-κB.


Asunto(s)
Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Phyllanthus , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ácido Acético , Animales , Permeabilidad Capilar/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ciclooxigenasa 2/genética , Dinoprostona/metabolismo , Etanol , Gastritis/inducido químicamente , Células HEK293 , Humanos , Ácido Clorhídrico , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Lipopolisacáridos , Metanol/química , Ratones Endogámicos ICR , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Solventes/química , Quinasa Syk , Células U937 , Familia-src Quinasas/antagonistas & inhibidores
13.
J Ethnopharmacol ; 159: 9-16, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25446596

RESUMEN

ETHNOPHARMACOLOGIC RELEVANCE: Persicaria chinensis L. (Polygonaceae) [also synonym as Polygonum chimnense L.] has been used as Chinese traditional medicine to treat ulcer, eczema, stomach ache, and various inflammatory skin diseases. Due to no molecular pharmacological evidence of this anti-inflammatory herbal plant, we investigated the inhibitory mechanisms and target proteins contributing to the anti-inflammatory responses of the plant by using its methanolic extract (Pc-ME). MATERIALS AND METHODS: We used lipopolysaccharide (LPS)-treated macrophages and a murine HCl/EtOH-induced gastritis model to evaluate the anti-inflammatory activity of Pc-ME. HPLC analysis was employed to identify potential active components of this extract. Molecular approaches including kinase assays, reporter gene assays, immunoprecipitation analysis, and overexpression of target enzymes were used to confirm target enzymes. RESULTS: Pc-ME inhibited LPS-induced nitric oxide and prostaglandin E2 release by RAW264.7 macrophages and ameliorated HCl/EtOH-induced gastric ulcers in mice. The nuclear translocation of NF-κB (p65 and p50) was suppressed by Pc-ME. Phosphorylation of Src and Syk, their kinase activities, and formation of the signaling complex of these proteins were repressed by Pc-ME. Phosphorylation of p85 and Akt induced by Src or Syk overexpression was blocked by Pc-ME. In the mouse gastritis model, orally administered Pc-ME suppressed the increased phosphorylation of IκBα, Αkt, Src, and Syk. Caffeic acid, kaempferol, and quercetin, identified as major anti-inflammatory components of Pc-ME by HPLC, displayed strong nitric oxide inhibitory activity in LPS-treated macrophages. CONCLUSION: Pc-ME might play a pivotal ethnopharmacologic role as an anti-inflammatory herbal medicine by targeting Syk and Src kinases and their downstream transcription factor NF-κB.


Asunto(s)
Antiinflamatorios/farmacología , Extractos Vegetales/farmacología , Polygonum , Inhibidores de Proteínas Quinasas/farmacología , Animales , Antiinflamatorios/uso terapéutico , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Etanol , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Flavonoides/uso terapéutico , Gastritis/inducido químicamente , Gastritis/tratamiento farmacológico , Células HEK293 , Humanos , Ácido Clorhídrico , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipopolisacáridos , Macrófagos , Masculino , Metanol/química , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Fitoterapia , Extractos Vegetales/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Solventes/química , Quinasa Syk , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/metabolismo
14.
Korean J Physiol Pharmacol ; 18(6): 469-74, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25598660

RESUMEN

DWP208 is a sodium succinate form of ZYM-201 which is a triterpenoid glycoside isolated from Sanguisorba officinalis, a medicinal plant prescribed for various diseases, such as duodenal ulcers and bleeding in East Asian counties. We demonstrated that this compound is able to normalize the altered lipid metabolism induced by hyperglycemia and a high fat diet. In this study, we determined whether hyperlipidemic conditions induced with chronically treated alcohol can also be restored by DWP208. Similar to our previous results, orally administered DWP208 (1 to 10 mg/kg) also ameliorated the hyperlipidemia that was induced by alcohol. This compound reversed the alcohol-induced hyperlipidemia including (i) up-regulated hyperlipidemic parameters such as low-density lipoprotein (LDL), very low-density lipoprotein (VLDL), atherosclerotic index (AI), triglyceride, and total cholesterol, and (ii) down-regulated hyperlipidemic parameters such as absolute body weight, superoxide dismutase (SOD) activity, and high-density lipoprotein (HDL) in serum and liver. According to our data, the ameliorative activity of DWP208 is due to its indirect anti-oxidative activity as a result of which lipid peroxide and hydroxyl radical levels were reduced and the activity of SOD was enhanced. Therefore, our data strongly suggest that DWP208 can be used as a remedy against alcohol-induced hyperlipidemia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA