Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Sport Rehabil ; 29(7): 926-933, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31775121

RESUMEN

CONTEXT: Foam rolling (FR) has been developed into a popular intervention and has been established in various sports disciplines. However, its effects on target tissue, including changes in stiffness properties, are still poorly understood. OBJECTIVE: To investigate muscle-specific and connective tissue-specific responses after FR in recreational athletes with different FR experience. DESIGN: Case series. SETTING: Laboratory environment. PARTICIPANTS: The study was conducted with 40 participants, consisting of 20 experienced (EA) and 20 nonexperienced athletes (NEA). INTERVENTION: The FR intervention included 5 trials per 45 seconds of FR of the lateral thigh in the sagittal plane with 20 seconds of rest between each trial. MAIN OUTCOME MEASURES: Acoustic radiation force impulse elastosonography values, represented as shear wave velocity, were obtained under resting conditions (t0) and several times after FR exercise (0 min [t1], 30 min [t2], 6 h [t3], and 24 h [t4]). Data were assessed in superficial and deep muscle (vastus lateralis muscle; vastus intermedius muscle) and in connective tissue (iliotibial band). RESULTS: In EA, tissue stiffness of the iliotibial band revealed a significant decrease of 13.2% at t1 (P ≤ .01) and 12.1% at t3 (P = .02). In NEA, a 6.2% increase of stiffness was found at t1, which was not significantly different to baseline (P = .16). For both groups, no significant iliotibial band stiffness changes were found at further time points. Also, regarding muscle stiffness, no significant changes were detected at any time for EA and NEA (P > .05). CONCLUSIONS: This study demonstrates a significant short-term decrease of connective tissue stiffness in EA, which may have an impact on the biomechanical output of the connective tissue. Thus, FR effects on tissue stiffness depend on the athletes' experience in FR, and existing studies have to be interpreted cautiously in the context of the enrolled participants.


Asunto(s)
Fascia/fisiología , Masaje/instrumentación , Músculo Cuádriceps/fisiología , Muslo/fisiología , Adulto , Atletas , Fascia/diagnóstico por imagen , Femenino , Voluntarios Sanos , Humanos , Masculino , Masaje/métodos , Músculo Cuádriceps/diagnóstico por imagen , Muslo/diagnóstico por imagen , Ultrasonografía , Adulto Joven
2.
Sports (Basel) ; 7(6)2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31200464

RESUMEN

The triathlon is one of the fastest developing sports in the world due to expanding participation and media attention. The fundamental change in Olympic triathlon races from a single to a multistart event is highly demanding in terms of recovery from and prevention of exercise-induced muscle injures. In elite and competitive sports, ultrastructural muscle injuries, including delayed onset muscle soreness (DOMS), are responsible for impaired muscle performance capacities. Prevention and treatment of these conditions have become key in regaining muscular performance levels and to guarantee performance and economy of motion in swimming, cycling and running. The aim of this review is to provide an overview of the current findings on the pathophysiology, as well as treatment and prevention of, these conditions in compliance with clinical implications for elite triathletes. In the context of DOMS, the majority of recovery interventions have focused on different protocols of compression, cold or heat therapy, active regeneration, nutritional interventions, or sleep. The authors agree that there is a compelling need for further studies, including high-quality randomized trials, to completely evaluate the effectiveness of existing therapeutic approaches, particularly in triathletes. The given recommendations must be updated and adjusted, as further evidence emerges.

3.
Sportverletz Sportschaden ; 33(1): 21-29, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30865998

RESUMEN

Delayed-onset muscle soreness (DOMS) describes an entity of ultrastructural muscle damage. The manifestation of DOMS is caused by eccentric muscle contractions or unaccustomed forms of exercise. Clinical signs include impaired muscular force capacities, painful restriction of movement, stiffness, swelling, and altered biomechanics in adjacent joints. Although DOMS is categorised as a mild type of muscle damage, it is one of the most common reasons for compromised sportive performance. In the last decade, many hypotheses have been developed to explain the aetiology of DOMS, and there are a wide range of different interventions aiming to prevent or alleviate the symptoms. Many studies have evaluated various types of cold or heat therapy, compression, massage, physical therapy or nutritional interventions. Treatment considerations focus on the primary prevention of ultrastructural lesions during exercise, the treatment of the inflammatory response that leads to DOMS, and recovery strategies for manifest DOMS. This narrative review aims to present an overview of the current treatment and preventive strategies in the field of DOMS.


Asunto(s)
Músculo Esquelético/fisiopatología , Mialgia/prevención & control , Mialgia/terapia , Ejercicio Físico , Humanos , Contracción Muscular , Manejo del Dolor
4.
Sports (Basel) ; 7(1)2019 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-30669477

RESUMEN

When considering the scientific lack concerning the execution and acute effects and mechanism of foam rolling (FR), this study has evaluated the biomechanical loads by the force-time characteristics during two popular FR exercises. Additionally, the acute effects of FR on jump height and muscular stiffness were simultaneously assessed. Within a randomized cross-over design, 20 males (26.6 ± 2.7 years; 181.6 ± 6.8 cm; 80.4 ± 9.1 kg) were tested on different days pre, post, and 15 and 30 min after three interventions. The interventions consisted of a FR procedure for the calf and anterior thigh of both legs, 10 min ergometer cycling, and resting as a control. Stiffness was measured via mechanomyography at the thigh, calf, and ankle. The vertical ground reaction forces were measured under the roller device during FR as well as to estimate jump height. Within the FR exercises, the forces decreased from the proximal to distal position, and were in mean 34 and 32% of body weight for the calves and thighs, respectively. Importantly, with 51 to 55%, the maxima of the individual mean forces were considerably higher. Jump height did not change after FR, but increased after cycling. Moreover, stiffness of the thigh decreased after FR and increased after cycling.

5.
J Strength Cond Res ; 31(4): 893-900, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27749733

RESUMEN

Hotfiel, T, Swoboda, B, Krinner, S, Grim, C, Engelhardt, M, Uder, M, and Heiss, R. Acute effects of lateral thigh foam rolling on arterial tissue perfusion determined by spectral Doppler and power Doppler ultrasound. J Strength Cond Res 31(4): 893-900, 2017-Foam rolling has been developed as a popular intervention in training and rehabilitation. However, evidence on its effects on the cellular and physiological level is lacking. The aim of this study was to assess the effect of foam rolling on arterial blood flow of the lateral thigh. Twenty-one healthy participants (age, 25 ± 2 years; height, 177 ± 9 cm; body weight, 74 ± 9 kg) were recruited from the medical and sports faculty. Arterial tissue perfusion was determined by spectral Doppler and power Doppler ultrasound, represented as peak flow (Vmax), time average velocity maximum (TAMx), time average velocity mean (TAMn), and resistive index (RI), and with semiquantitative grading that was assessed by 4 blindfolded investigators. Measurement values were assessed under resting conditions and twice after foam rolling exercises of the lateral thigh (0 and 30 minutes after intervention). The trochanteric region, mid portion, and distal tibial insertion of the lateral thigh were representative for data analysis. Arterial blood flow of the lateral thigh increased significantly after foam rolling exercises compared with baseline (p ≤ 0.05). We detected a relative increase in Vmax of 73.6% (0 minutes) and 52.7% (30 minutes) (p < 0.001), in TAMx of 53.2% (p < 0.001) and 38.3% (p = 0.002), and in TAMn of 84.4% (p < 0.001) and 68.2% (p < 0.001). Semiquantitative power Doppler scores at all portions revealed increased average grading of 1.96 after intervention and 2.04 after 30 minutes compared with 0.75 at baseline. Our results may contribute to the understanding of local physiological reactions to self-myofascial release.


Asunto(s)
Tratamiento de Tejidos Blandos/métodos , Muslo/irrigación sanguínea , Muslo/fisiología , Adulto , Velocidad del Flujo Sanguíneo , Femenino , Hemodinámica , Humanos , Masculino , Muslo/diagnóstico por imagen , Ultrasonografía , Ultrasonografía Doppler
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA