Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Mater Chem B ; 9(25): 5069-5075, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34137418

RESUMEN

Chemodynamic therapy (CDT) is an emerging approach to overcome bacterial infections that can efficiently convert hydrogen peroxide (H2O2) to generate highly toxic hydroxyl radicals (˙OH). How to develop safe and effective CDT-based strategies is in high demand but challenging. Herein, a cascade catalytic nanoplatform (GOx-NCs/Fe3O4) was designed by absorbing glucose oxidase (GOx) onto the surface of covalent-assembled polymer capsules (NCs) encapsulating Fe3O4 nanoparticles. With the presence of glucose, GOx could effectively catalyze it to produce H2O2 and result in a decrease in pH value, both of which would assist the subsequent Fenton reaction. Encapsulated Fe3O4 nanoparticles would subsequently trigger H2O2 to produce ˙OH, which could make antibacterial CDT come true. More importantly, the polymer capsules exhibited little to no cytotoxicity towards mammalian cells, which might provide more opportunities and potential to apply in other fields.


Asunto(s)
Antibacterianos/farmacología , Calixarenos/farmacología , Escherichia coli/efectos de los fármacos , Nanopartículas de Magnetita/química , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Calixarenos/síntesis química , Calixarenos/química , Catálisis , Ratones , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Células 3T3 NIH , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química
2.
BMC Genet ; 18(1): 38, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28464792

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) have a great influence on various physiological functions. A lot of high-throughput sequencing (HTS) research on miRNAs has been executed in the caprine mammary gland at different lactation periods (common milk lactation and dry period), but little is known about differentially expressed miRNAs in the caprine mammary gland of colostrum and peak lactation periods. RESULT: This study identified 131 differentially expressed miRNAs (P < 0.05 and log2 colostrum normalized expression (NE)/peak lactation NE > 1 or log2 colostrum NE/peak lactation NE < -1), including 57 known miRNAs and 74 potential novel miRNAs in the colostrum and peak lactation libraries. In addition, compared with differentially expressed miRNAs in the peak lactation period, 45 miRNAs in the colostrum lactation period were remarkably upregulated, whereas 86 miRNAs were markedly downregulated (P < 0.05 and log2 colostrum NE/peak lactation NE > 1 or log2 colostrum NE/peak lactation NE < -1). The expressions of 10 randomly selected miRNAs was analyzed through stem-loop real-time quantitative PCR (RT-qPCR). Their expression patterns were the same with Solexa sequencing results. Pathway analysis suggested that oestrogen, endocrine, adipocytokine, oxytocin and MAPK signalling pathways act on the development of mammary gland and milk secretion importantly. In addition, the miRNA-target-network showed that the bta-miR-574 could influence the development of mammary gland and lactation by leptin receptor (LEPR), which was in the adipocytokine signalling pathway. Chr5_3880_mature regulated mammary gland development and lactation through Serine/threonine-protein phosphatase (PPP1CA), which was in the oxytocin signalling pathway. CONCLUSIONS: Our finding suggested that the profiles of miRNAs were related to the physiological functions of mammary gland in the colostrum and peak lactation periods. The biological features of these miRNAs may help to clarify the molecular mechanisms of lactation and the development of caprine mammary gland.


Asunto(s)
Calostro/química , Cabras/genética , Lactancia/genética , Glándulas Mamarias Animales/crecimiento & desarrollo , MicroARNs/análisis , Leche/química , Animales , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Cabras/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo
3.
Biol Trace Elem Res ; 167(2): 242-50, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25813835

RESUMEN

We used 240 kid Boer goats that were divided into six groups. The control group was fed a basal diet containing 0.05 mg of selenium (Se)/kg dry matter (DM). Trial groups received the basal diet supplemented with 0.1, 0.2, 0.3, 0.4, or 0.5 mg Se/kg DM (using a commercial selenomethionine product). Trial groups showed an improvement in growth performance (P < 0.05) despite no change in average daily feed intakes (ADFIs) (P > 0.05) compared to the control group A, quadratic model showed a correlation between glutathione peroxidase activity level in whole blood and dietary Se concentration (R(2) = 0.883, P < 0.04). The best linear model showed that increasing concentrations of Se in the blood (R(2) = 0.968, P < 0.001) and muscle (R(2) = 0.942, P < 0.001) corresponded to increasing Se concentrations in feed. Accumulation of Se in different tissues and organs corresponded to increasing Se concentrations in the diet as well as to the total time goats spent feeding on supplemented diet. Kidney and muscle tissues showed the highest and lowest accumulation of Se, respectively. Thus, Se in goat meat can be increased by adding between 0.1 and 0.5 mg/kg of selenomethionine to the diet of goats.


Asunto(s)
Suplementos Dietéticos , Glutatión Peroxidasa/sangre , Cabras/sangre , Selenio/sangre , Selenometionina/farmacología , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA