Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemosphere ; 322: 138225, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36828103

RESUMEN

Surfactant-enhanced bioremediation (SEBR) is frequently employed to clean up soil polluted with petroleum hydrocarbons, but few studies have focused on how surfactants affect microbial communities and different fractions of petroleum hydrocarbons, particularly in the field. Here, the surfactants sodium dodecyl benzene sulfonate (SDBS), alpha olefin sulfonate (AOS), Triton X-100 (TX-100), Tween80, and rhamnolipid were combined with the oil-degrading bacterium Pseudomonas sp. SB to remediate oil-contaminated soil in the laboratory. AOS gave the highest removal efficiency (65.1%) of total petroleum hydrocarbons (TPHs). Therefore, AOS was used in a field experiment with Pseudomonas sp. SB and the removal efficiency of TPHs and long-chain hydrocarbons C21-C40 reached 57.4 and 53.0%, respectively, significantly higher than the other treatments. During bioremediation the addition of Pseudomonas sp. SB significantly stimulated the growth of bacterial genera such as Alcanivorax, Luteimonas, Parvibaculum, Stenotrophomonas, and Pseudomonas and AOS further stimulated the growth of Sphingobacterium, Pseudomonas and Alcanivorax. This study validates the feasibility of surfactant-enhanced bioremediation in the field and partly reveals the mechanism of surfactant-enhanced bioremediation from the perspective of changes in different fractions of petroleum and microbial community dynamics.


Asunto(s)
Microbiota , Petróleo , Surfactantes Pulmonares , Contaminantes del Suelo , Biodegradación Ambiental , Tensoactivos , Contaminantes del Suelo/análisis , Microbiología del Suelo , Hidrocarburos , Pseudomonas , Alquenos , Bacterias , Suelo
2.
Chemosphere ; 286(Pt 2): 131750, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34352537

RESUMEN

The remediation effects of hydrogen peroxide (H2O2) oxidation and surfactant-leaching alone or in combination on three typical oilfield sludges were studied. The removal efficiency of total petroleum hydrocarbons (TPHs) of Jidong, Liaohe and Jiangsu oil sludges by hydrogen peroxide oxidation alone was very poor (6.5, 6.8, and 3.4 %, respectively) but increased significantly (p < 0.05), especially of long-chain hydrocarbons, by combining the use of H2O2 with surfactants (80.0, 79.8 and 82.2 %, respectively). Oxidation combined with leaching may impair microbial activity and organic manure was therefore added to the treated sludges for biostimulation and the composition and function of the microbial community were studied. The addition of manure rapidly restored sludge microbial activity and significantly increased the relative abundance of some salt-tolerant and alkali-tolerant petroleum-degrading bacteria such as Corynebacterium, Pseudomonas, Dietzia and Jeotgalicoccus. Moreover, the relative abundance of two classic petroleum-degrading enzyme genes, alkane 1-monooxygenase and catechol 1, 2-dioxygenase, increased significantly.


Asunto(s)
Microbiota , Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Hidrocarburos , Peróxido de Hidrógeno , Petróleo/análisis , Aguas del Alcantarillado , Microbiología del Suelo , Contaminantes del Suelo/análisis , Tensoactivos
3.
Sci Total Environ ; 792: 148411, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34465037

RESUMEN

Biodegradation of soil contaminants may be promoted near plant roots due to the "rhizosphere effect" which may enhance microbial growth and activity. However, the effects of different plant cultivars within a single species on degradation remains unclear. Here, we evaluated the removal of soil total petroleum hydrocarbons (TPHs) by ten different cultivars of tall fescue grass (Festuca arundinacea L.) and their associated rhizosphere microbiomes. TPH removal efficiency across the ten different cultivars was not significantly correlated with plant biomass. Rhizing Star and Greenbrooks cultivars showed the maximum (76.6%) and minimum (62.2%) TPH removal efficiencies, respectively, after 120 days. Significant differences were observed between these two cultivars in the composition of rhizosphere bacterial and fungal communities, especially during the early stages (day 30) of remediation but the differences decreased later (day 90). Putative petroleum-degrading bacterial and fungal guilds were enriched in the presence of tall fescue. Moreover, the complexity of microbial networks declined in treatments with higher TPH removal efficiency. The relative abundances of saprotrophic fungi and putative genes alkB and C12O in bacetria involved in petroleum degradation increased, especially in the presence of Rhizing Star cultivar, and this was consistent with the TPH removal efficiency results. These results indicate the potential of tall fescue grass cultivars and their associated rhizosphere microbiomes to phytoremediate petroleum hydrocarbon-contaminated soils.


Asunto(s)
Festuca , Microbiota , Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Hidrocarburos , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
4.
Environ Sci Pollut Res Int ; 23(18): 18621-9, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27306207

RESUMEN

Plant growth-promoting yeasts are often over looked as a mechanism to improve phytoremediation of heavy metals. In this study, Cryptococcus sp. NSE1, a Cd-tolerant yeast with plant growth capabilities, was isolated from the rhizosphere of the heavy metal hyperaccumulator Sedum plumbizincicola. The yeast exhibited strong tolerance to a range of heavy metals including Cd, Cu, and Zn on plate assays. The adsorption rate Cd, Cu, Zn by NSE1 was 26.1, 13.2, and 25.2 %, respectively. Irregular spines were formed on the surface of NSE1 when grown in MSM medium supplemented with 200 mg L(-1) Cd. NSE1 was capable of utilizing 1-aminocyclopropane-1-carboxylate (ACC) as a sole nitrogen source and was capable of solubilization of inorganic phosphate at rates of 195.2 mg L(-1). Field experiments demonstrated that NSE1 increased phytoremediation by increasing the biomass of Cd hyperaccumulator S. plumbizincicola (46 %, p < 0.05) during phytoremediation. Overall, Cd accumulation by S. plumbizincicola was increased from 19.6 to 31.1 mg m(-2) though no difference in the concentration of Cd in the shoot biomass was observed between NSE1 and control. A Cd accumulation ratio of 38.0 % for NSE1 and 17.2 % for control was observed. The HCl-extractable Cd and CaCl2-extractable Cd concentration in the soil of the NSE1 treatment were reduced by 39.2 and 29.5 %, respectively. Community-level physiology profiling, assessed using Biolog Eco plates, indicated functional changes to the rhizosphere community inoculated with NSE1 by average well color development (AWCD) and measurement of richness (diversity). Values of Shannon-Weiner index, Simpson index, and McIntosh index showed a slight but no significant increases. These results indicate that inoculation of NSE1 could increase the shoot biomass of S. plumbizincicola, enhance the Cd accumulation in S. plumbizincicola, and decrease the available heavy metal content in soils significantly without overall significant changes to the microbial community.


Asunto(s)
Adaptación Fisiológica/fisiología , Biodegradación Ambiental , Cadmio/metabolismo , Cryptococcus/fisiología , Metales Pesados/toxicidad , Sedum/fisiología , Biomasa , Metales Pesados/análisis , Fosfatos , Desarrollo de la Planta , Rizosfera , Saccharomyces cerevisiae , Suelo , Contaminantes del Suelo/análisis , Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA