Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mitochondrial DNA B Resour ; 9(2): 233-236, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38313466

RESUMEN

Pulsatilla chinensis f. alba D. K. Zang 1993 is a forma of Pulsatilla chinensis (Bge.) Regel, the root of P. chinensis is traditional Chinese medicine called Pulsatillae radix. The biggest difference between P. chinensis f. alba and P. chinensis is that P. chinensis f. alba sepals is white. The complete chloroplast genome of P. chinensis f. alba was sequenced using the Illumina NovaSeq platform for the first time. The lengths of the genome, large single-copy (LSC), small single-copy (SSC), two inverted repeats (IRs), and GC content were 163,654 bp, 82,355 bp, 19,069 bp, 31,115 bp, and 37.2%, respectively. It had 134 genes, including 90 protein-coding genes, 36 tRNA genes, and eight rRNA genes. The maximum-likelihood tree indicated that P. chinensis f. alba had a closer relationship with P. chinensis. This study would provide a theoretical basis for the further study of Pulsatilla plants genetics phylogenetic research.

2.
Mitochondrial DNA B Resour ; 8(8): 804-808, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37545553

RESUMEN

Grewia biloba var. parviflora (Bunge) Hand.-Mazz. (1933), a shrub or small tree, is native to northern and southern China. It is an excellent relief and medicinal plant. The complete chloroplast genome is 158,043 bp in length, with a large single-copy region of 86,957 bp, a small single-copy region of 20,138 bp, two inverted repeat regions of 25,474 bp each, and a GC content of 37.4%. There were 129 genes annotated, including 84 known protein-coding genes, 37 tRNAs, and eight rRNAs. The phylogenetic trees are constructed using plastome data from 38 species and the maximum-likelihood method. The results of the chloroplast genome-wide analysis and the phylogenetic tree show the taxonomic phylogeny of the G. biloba var. parviflora in relation to other species, increasing the accuracy of the phylogenetic classification of the plant.

3.
Appl Microbiol Biotechnol ; 107(17): 5555-5567, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37436481

RESUMEN

The plant-associated microbiome has an effect on plant growth. Pulsatilla chinensis (Bge.) Regel is an important Chinese medicinal plant. Currently, there is little understanding of the P. chinensis-associated microbiome and its diversity and composition. Here, the core microbiome associated with the root, leaf, and rhizospheric soil compartments of P. chinensis from five geographical locations was analyzed by the metagenomics approach. The alpha and beta diversity analysis showed that the microbiome associated with P. chinensis was shaped by the compartment, especially in the bacterial community. The geographical location had little influence on microbial community diversity associated with root and leaf. Hierarchical clustering distinguished the microbial communities of rhizospheric soil based on their geographical location and among the soil properties, pH was showed the more stronger effect on the diversity of rhizospheric soil microbial communities. Proteobacteria was the most dominant bacterial phylum in the root, leaf, and rhizospheric soil. Ascomycota and Basidiomycota were the most dominant fungal phyla in different compartments. Rhizobacter, Anoxybacillus, and IMCC26256 were the most important marker bacterial species for root, leaf, and rhizospheric soil screened by random forest, respectively. The fungal marker species for root, leaf, and rhizospheric soil were not only different across the compartments but also the geographical locations. Functional analysis showed that P. chinensis-associated microbiome had the similar function which had no obvious relationship with geographical location and compartment. The associated microbiome indicated in this study can be used for identifying microorganisms related to the quality and growth of P. chinensis. KEY POINTS: • Microbiome associated with P. chinensis was shaped by the compartment • Microbiome composition and abundance associated with rhizospheric soil were affected by the geographical location • Compared with fungi, bacterial associated with P. chinensis composition and diversity were more stable in different geographical locations and compartments.


Asunto(s)
Microbiota , Plantas Medicinales , Pulsatilla , Rizosfera , Microbiología del Suelo , Raíces de Plantas/microbiología , Bacterias/genética , Suelo/química
4.
BMC Plant Biol ; 23(1): 86, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759759

RESUMEN

BACKGROUND: Burdock is a biennial herb of Asteraceae found in Northern Europe, Eurasia, Siberia, and China. Its mature dry fruits, called Niu Bang Zi, are recorded in various traditional Chinese medicine books. With the development of sequencing technology, the mitochondrial, chloroplast, and nuclear genomes, transcriptome, and sequence-related amplified polymorphism (SRAP) fingerprints of burdock have all been reported. To make better use of this data for further research and analysis, a burdock database was constructed. RESULTS: This burdock multi-omics database contains two burdock genome datasets, two transcriptome datasets, eight burdock chloroplast genomes, one burdock mitochondrial genome, one A. tomentosum chloroplast genome, one A. tomentosum mitochondrial genome, 26 phenotypes of burdock varieties, burdock rhizosphere-associated microorganisms, and chemical constituents of burdock fruit, pericarp, and kernel at different growth stages (using UPLC-Q-TOF-MS). The wild and cultivation distribution of burdock in China was summarized, and the main active components and pharmacological effects of burdock currently reported were concluded. The database contains ten central functional modules: Home, Genome, Transcriptome, Jbrowse, Search, Tools, SRAP fingerprints, Associated microorganisms, Chemical, and Publications. Among these, the "Tools" module can be used to perform sequence homology alignment (Blast), multiple sequence alignment analysis (Muscle), homologous protein prediction (Genewise), primer design (Primer), large-scale genome analysis (Lastz), and GO and KEGG enrichment analyses (GO Enrichment and KEGG Enrichment). CONCLUSIONS: The database URL is http://210.22.121.250:41352/ . This burdock database integrates molecular and chemical data to provide a comprehensive information and analysis platform for interested researchers and can be of immense help to the cultivation, breeding, and molecular pharmacognosy research of burdock.


Asunto(s)
Arctium , Plantas Medicinales , Plantas Medicinales/genética , Arctium/genética , Arctium/química , Multiómica , Fitomejoramiento , Medicina Tradicional China , Extractos Vegetales/química
5.
PLoS One ; 13(1): e0190900, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29324770

RESUMEN

Under acidic conditions, aluminum (Al) toxicity is an important factor limiting plant productivity; however, the application of phosphorus (P) might alleviate the toxic effects of Al. In this study, seedlings of two vegetatively propagated Eucalyptus clones, E. grandis × E. urophylla 'G9' and E. grandis × E. urophylla 'DH32-29'were subjected to six treatments (two levels of Al stress and three levels of P). Under excessive Al stress, root Al content was higher, whereas shoot and leaf Al contents were lower with P application than those without P application. Further, Al accumulation was higher in the roots, but lower in the shoots and leaves of G9 than in those of DH32-29. The secretion of organic acids was higher under Al stress than under no Al stress. Further, under Al stress, the roots of G9 secreted more organic acids than those of DH32-29. With an increase in P supply, Al-induced secretion of organic acids from roots decreased. Under Al stress, some enzymes, including PEPC, CS, and IDH, played important roles in organic acid biosynthesis and degradation. Thus, our results indicate that P can reduce Al toxicity via the fixation of elemental Al in roots and restriction of its transport to stems and leaves, although P application cannot promote the secretion of organic acid anions. Further, the higher Al-resistance of G9 might be attributed to the higher Al accumulation in and organic acid anion secretion from roots and the lower levels of Al in leaves.


Asunto(s)
Aluminio/toxicidad , Eucalyptus/efectos de los fármacos , Eucalyptus/metabolismo , Fósforo/farmacología , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Sustancias Protectoras/farmacología , Cloruro de Aluminio , Compuestos de Aluminio/farmacología , Biomasa , Cloruros/farmacología , Enzimas/metabolismo , Eucalyptus/genética , Fosfatos/administración & dosificación , Fosfatos/farmacología , Fósforo/administración & dosificación , Hojas de la Planta/efectos de los fármacos , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/metabolismo , Compuestos de Potasio/administración & dosificación , Compuestos de Potasio/farmacología , Sustancias Protectoras/administración & dosificación , Distribución Aleatoria , Plantones/efectos de los fármacos , Plantones/metabolismo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA