Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Mater ; 36(9): e2307006, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37924225

RESUMEN

The ferroptosis pathway is recognized as an essential strategy for tumor treatment. However, killing tumor cells in deep tumor regions with ferroptosis agents is still challenging because of distinct size requirements for intratumoral accumulation and deep tumor penetration. Herein, intelligent nanocapsules with size-switchable capability that responds to acid/hyperthermia stimulation to achieve deep tumor ferroptosis are developed. These nanocapsules are constructed using poly(lactic-co-glycolic) acid and Pluronic F127 as carrier materials, with Au-Fe2 C Janus nanoparticles serving as photothermal and ferroptosis agents, and sorafenib (SRF) as the ferroptosis enhancer. The PFP@Au-Fe2 C-SRF nanocapsules, designed with an appropriate size, exhibit superior intratumoral accumulation compared to free Au-Fe2 C nanoparticles, as evidenced by photoacoustic and magnetic resonance imaging. These nanocapsules can degrade within the acidic tumor microenvironment when subjected to laser irradiation, releasing free Au-Fe2 C nanoparticles. This enables them to penetrate deep into tumor regions and disrupt intracellular redox balance. Under the guidance of imaging, these PFP@Au-Fe2 C-SRF nanocapsules effectively inhibit tumor growth when exposed to laser irradiation, capitalizing on the synergistic photothermal and ferroptosis effects. This study presents an intelligent formulation based on iron carbide for achieving deep tumor ferroptosis through size-switchable cascade delivery, thereby advancing the comprehension of ferroptosis in the context of tumor theranostics.


Asunto(s)
Compuestos Inorgánicos de Carbono , Ferroptosis , Hipertermia Inducida , Compuestos de Hierro , Nanocápsulas , Nanopartículas , Neoplasias , Humanos , Línea Celular Tumoral , Neoplasias/terapia , Sorafenib , Hipertermia/terapia , Hipertermia Inducida/métodos , Microambiente Tumoral
2.
J Am Chem Soc ; 145(20): 11019-11032, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37190936

RESUMEN

Biomedical micro/nanorobots as active delivery systems with the features of self-propulsion and controllable navigation have made tremendous progress in disease therapy and diagnosis, detection, and biodetoxification. However, existing micro/nanorobots are still suffering from complex drug loading, physiological drug stability, and uncontrollable drug release. To solve these problems, micro/nanorobots and nanocatalytic medicine as two independent research fields were integrated in this study to achieve self-propulsion-induced deeper tumor penetration and catalytic reaction-initiated tumor therapy in vivo. We presented self-propelled Janus nanocatalytic robots (JNCRs) guided by magnetic resonance imaging (MRI) for in vivo enhanced tumor therapy. These JNCRs exhibited active movement in H2O2 solution, and their migration in the tumor tissue could be tracked by non-invasive MRI in real time. Both increased temperature and reactive oxygen species production were induced by near-infrared light irradiation and iron-mediated Fenton reaction, showing great potential for tumor photothermal and chemodynamic therapy. In comparison with passive nanoparticles, these self-propelled JNCRs enabled deeper tumor penetration and enhanced tumor therapy after intratumoral injection. Importantly, these robots with biocompatible components and byproducts exhibited biosecurity in the mouse model. It is expected that our work could promote the combination of micro/nanorobots and nanocatalytic medicine, resulting in improved tumor therapy and potential clinical transformations.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Robótica , Animales , Ratones , Peróxido de Hidrógeno , Hipertermia Inducida/métodos , Línea Celular Tumoral , Neoplasias/terapia , Nanopartículas/uso terapéutico , Imagen por Resonancia Magnética/métodos
3.
Nature ; 609(7925): 46-51, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36045238

RESUMEN

Superlattices-a periodic stacking of two-dimensional layers of two or more materials-provide a versatile scheme for engineering materials with tailored properties1,2. Here we report an intrinsic heterodimensional superlattice consisting of alternating layers of two-dimensional vanadium disulfide (VS2) and a one-dimensional vanadium sulfide (VS) chain array, deposited directly by chemical vapour deposition. This unique superlattice features an unconventional 1T stacking with a monoclinic unit cell of VS2/VS layers identified by scanning transmission electron microscopy. An unexpected Hall effect, persisting up to 380 kelvin, is observed when the magnetic field is in-plane, a condition under which the Hall effect usually vanishes. The observation of this effect is supported by theoretical calculations, and can be attributed to an unconventional anomalous Hall effect owing to an out-of-plane Berry curvature induced by an in-plane magnetic field, which is related to the one-dimensional VS chain. Our work expands the conventional understanding of superlattices and will stimulate the synthesis of more extraordinary superstructures.

4.
Biomed Pharmacother ; 154: 113545, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36007274

RESUMEN

Magnetic nanoparticles(NPs) are characterized by a rich variety of properties. Because of their excellent physical and chemical properties, they have come to the fore in biomedicine and other fields. The magnetic NPs were extensively studied in magnetic separation of cells, targeted drug delivery, tumor hyperthermia, chemo-photothermal therapy, magnetic resonance imaging (MRI) and other biomedical fields. Magnetic NPs are increasingly used in magnetic resonance imaging (MRI) based on their inherent magnetic targeting, superparamagnetic enzyme-like catalytic properties and nanoscale size. Poly(lactic-co-glycolic acid) (PLGA) is a promising biodegradable material approved by FDA and EU for drug delivery. Currently, PLGA-based magnetic nano-drug delivery systems have attracted the attention of researchers. Herein, we achieved the effective encapsulation of sized-controlled polyethylene glycol-3,4-dihydroxy benzyl-amine-coated superparamagnetic iron oxide nanoparticles (SPIO NPs) and euphorbiasteroid into PLGA nanospheres via a modified multiple emulsion solvent evaporation method (W1/O2/W2). NPs with narrow size distribution and acceptable magnetic properties were developed that are very useful for applications involving cancer therapy and MRI. Furthermore, SPIO-PLGA NPs enhanced the MRI T2 relaxation properties of tumor sites.The prepared SPIO NPs and magnetic PLGA nanospheres can be promising magnetic drug delivery systems for tumor theranostics. This study has successfully constructed a tumor-targeting and magnetic-targeting smart nanocarrier with enhanced permeability and retention, multimodal anti-cancer therapeutics and biodegradability, which could be a hopeful candidate for anti-tumor therapy in the future.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Compuestos Férricos , Humanos , Nanopartículas/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Tamaño de la Partícula , Medicina de Precisión
5.
ACS Nano ; 11(9): 9239-9248, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28850218

RESUMEN

Imaging-guided photothermal therapy (PTT) by combination of imaging and PTT has been emerging as a promising therapeutic method for precision therapy. However, the development of multicomponent nanoplatforms with stable structures for both PTT and multiple-model imaging remains a great challenge. Herein, we synthesized monodisperse Au-Fe2C Janus nanoparticles (JNPs) of 12 nm, which are multifunctional entities for cancer theranostics. Due to the broad absorption in the near-infrared range, Au-Fe2C JNPs showed a significant photothermal effect with a 30.2% calculated photothermal transduction efficiency under 808 nm laser irradiation in vitro. Owing to their excellent optical and magnetic properties, Au-Fe2C JNPs were demonstrated to be advantageous agents for triple-modal magnetic resonance imaging (MRI)/multispectral photoacoustic tomography (MSOT)/computed tomography (CT) both in vitro and in vivo. We found that Au-Fe2C JNPs conjugated with the affibody (Au-Fe2C-ZHER2:342) have more accumulation and deeper penetration in tumor sites than nontargeting JNPs (Au-Fe2C-PEG) in vivo. Meanwhile, our results verified that Au-Fe2C-ZHER2:342 JNPs can selectively target tumor cells with low cytotoxicity and ablate tumor tissues effectively in a mouse model. In summary, monodisperse Au-Fe2C JNPs, used as a multifunctional nanoplatform, allow the combination of multiple-model imaging techniques and high therapeutic efficacy and have great potential for precision theranostic nanomedicines.


Asunto(s)
Compuestos Inorgánicos de Carbono/uso terapéutico , Oro/uso terapéutico , Compuestos de Hierro/uso terapéutico , Nanopartículas/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Nanomedicina Teranóstica/métodos , Animales , Línea Celular Tumoral , Humanos , Hipertermia Inducida/métodos , Imagen por Resonancia Magnética/métodos , Ratones , Nanopartículas/ultraestructura , Técnicas Fotoacústicas/métodos , Fototerapia/métodos , Tomografía Computarizada por Rayos X/métodos
6.
Adv Mater ; 26(24): 4114-20, 2014 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-24677251

RESUMEN

Fe5 C2 NPs exhibit a high contrast in magnetic resonance imaging (MRI), superior photoacoustic tomography improvements, and efficient photothermal therapy (PTT) due to their unique core/shell structure, with a magnetic core and carbon shell. By conjugating a new class of affinity proteins (ZHER2:342), they can target to tumor cells with low cytotoxicity, and kill them through laser irritation. It is also possible to ablate tumors under guidance by MRI and PTT without noticeable side effects.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Nanopartículas del Metal/uso terapéutico , Neoplasias Experimentales/patología , Neoplasias Experimentales/terapia , Técnicas Fotoacústicas/métodos , Fototerapia/métodos , Animales , Compuestos Inorgánicos de Carbono/uso terapéutico , Línea Celular Tumoral , Compuestos de Hierro/uso terapéutico , Ensayo de Materiales , Ratones , Tamaño de la Partícula , Resultado del Tratamiento
7.
Adv Mater ; 25(35): 4932-7, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23864555

RESUMEN

We develop a simple and economical thermal annealing method for the synthesis of phosphorus-doped graphene, which exhibits remarkable electrocatalytic activity towards the oxygen reduction reaction and enhances the electrochemical performance as an anode material for lithium ion batteries. The experimental results suggest the significant role of phosphorus atoms in graphene.


Asunto(s)
Grafito/química , Litio/química , Oxígeno/química , Fósforo/química , Suministros de Energía Eléctrica , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA