Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Viruses ; 14(2)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35215943

RESUMEN

An escalating pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has severely impacted global health. There is a severe lack of specific treatment options for diseases caused by SARS-CoV-2. In this study, we used a pseudotype virus (pv) containing the SARS-CoV-2 S glycoprotein to screen a botanical drug library containing 1037 botanical drugs to identify agents that prevent SARS-CoV-2 entry into the cell. Our study identified four hits, including angeloylgomisin O, schisandrin B, procyanidin, and oleanonic acid, as effective SARS-CoV-2 S pv entry inhibitors in the micromolar range. A mechanistic study revealed that these four agents inhibited SARS-CoV-2 S pv entry by blocking spike (S) protein-mediated membrane fusion. Furthermore, angeloylgomisin O and schisandrin B inhibited authentic SARS-CoV-2 with a high selective index (SI; 50% cytotoxic concentration/50% inhibition concentration). Our drug combination studies performed in cellular antiviral assays revealed that angeloylgomisin O has synergistic effects in combination with remdesivir, a drug widely used to treat SARS-CoV-2-mediated infections. We also showed that two hits could inhibit the newly emerged alpha (B.1.1.7) and beta (B.1.351) variants. Our findings collectively indicate that angeloylgomisin O and schisandrin B could inhibit SARS-CoV-2 efficiently, thereby making them potential therapeutic agents to treat the coronavirus disease of 2019.


Asunto(s)
Antivirales/farmacología , Extractos Vegetales/farmacología , SARS-CoV-2/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Internalización del Virus/efectos de los fármacos , Animales , Células CACO-2 , Línea Celular , Chlorocebus aethiops , Cricetinae , Descubrimiento de Drogas , Células HEK293 , Humanos , Células Vero , Tratamiento Farmacológico de COVID-19
2.
Plant Physiol ; 176(3): 2202-2220, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29363564

RESUMEN

Pectins are major components of the primary plant cell wall, which functions as the primary barrier against pathogens. Pectin methylesterases (PMEs) catalyze the demethylesterification of the homogalacturonan domains of pectin in the plant cell wall. Their activity is regulated by PME inhibitors (PMEIs). Here, we provide evidence that the pectin methylesterase-inhibiting protein GhPMEI3 from cotton (Gossypium hirsutum) functions in plant responses to infection by the fungus Verticillium dahliae GhPMEI3 interacts with PMEs and regulates the expression of a specific fungal polygalacturonase (VdPG1). Ectopic expression of GhPMEI3 increased pectin methyl esterification and limited fungal disease in cotton, while also modulating root elongation. Enzymatic analyses revealed that GhPMEI3 efficiently inhibited the activity of cotton GhPME2/GhPME31. Experiments using transgenic Arabidopsis (Arabidopsis thaliana) plants expressing the GhPMEI3 gene under the control of the CaMV 35S promoter revealed that GhPMEI3 inhibits the endogenous PME activity in vitro. Moreover, the enhanced resistance to V. dahliae was associated with altered VdPG1 expression. Virus-induced silencing of GhPMEI3 resulted in increased susceptibility to V. dahliae Further, we investigated the interaction between GhPMEI3 and GhPME2/GhPME31 using inhibition assays and molecular docking simulations. The peculiar structural features of GhPMEI3 were responsible for the formation of a 1:1 stoichiometric complex with GhPME2/GhPME31. Together, these results suggest that GhPMEI3 enhances resistance to Verticillium wilt. Moreover, GhPMEI3-GhPMEs interactions would be needed before drawing the correlation between structure-function and are crucial for plant development against the ever-evolving fungal pathogens.


Asunto(s)
Hidrolasas de Éster Carboxílico/antagonistas & inhibidores , Hidrolasas de Éster Carboxílico/química , Gossypium/genética , Proteínas de Plantas/farmacología , Verticillium/patogenicidad , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/microbiología , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Regulación de la Expresión Génica de las Plantas , Gossypium/microbiología , Interacciones Huésped-Patógeno , Simulación del Acoplamiento Molecular , Pectinas/metabolismo , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Electricidad Estática
3.
PLoS One ; 11(1): e0146959, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26752638

RESUMEN

Compliance with ethical standards: This study did not involve human participants and animals, and the plant of interest is not an endangered species. Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat proteins that plants produce against polygalacturonase, a key virulence agent in pathogens. In this paper, we cloned and purified CkPGIP1, a gene product from Cynanchum komarovii that effectively inhibits polygalacturonases from Botrytis cinerea and Rhizoctonia solani. We found the expression of CkPGIP1 to be induced in response to salicylic acid, wounding, and infection with B. cinerea and R. solani. In addition, transgenic overexpression in Arabidopsis enhanced resistance against B. cinerea. Furthermore, CkPGIP1 obtained from transgenic Arabidopsis inhibited the activity of B. cinerea and R. solani polygalacturonases by 62.7-66.4% and 56.5-60.2%, respectively. Docking studies indicated that the protein interacts strongly with the B1-sheet at the N-terminus of the B. cinerea polygalacturonase, and with the C-terminus of the polygalacturonase from R. solani. This study highlights the significance of CkPGIP1 in plant disease resistance, and its possible application to manage fungal pathogens.


Asunto(s)
Arabidopsis/microbiología , Cynanchum/metabolismo , Enfermedades de las Plantas/microbiología , Extractos Vegetales/química , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Botrytis/enzimología , Clonación Molecular , Cynanchum/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Poligalacturonasa/antagonistas & inhibidores , Reacción en Cadena de la Polimerasa , Unión Proteica , Estructura Terciaria de Proteína , Rhizoctonia/enzimología , Ácido Salicílico/química , Homología de Secuencia de Aminoácido
4.
Protein Sci ; 21(6): 865-75, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22532259

RESUMEN

Cynanchum komarovii Al Iljinski is a desert plant that has been used as analgesic, anthelminthic, and antidiarrheal, but also as herbal medicine to treat cholecystitis in people. In this work, an antifungal protein with sequence homology to chitinase was isolated from C. komarovii seeds and named CkChn134. The three-dimensional structure prediction of CkChn134 indicated that the protein has a loop domain formed a thin cleft, which is able to bind molecules and substrates. The protein and CkTLP synergistically inhibited the fungal growth of Verticillium dahliae, Fusarium oxysporum, Rhizoctonia solani, Botrytis cinerea, and Valsa mali in vitro. The full-length cDNA was cloned by RT-PCR and RACE-PCR according to the partial protein sequences obtained by nanoESI-MS/MS. The real-time PCR showed that the transcription level of CkChn134 had a significant increase under the stress of ethylene, NaCl, low temperature, drought, and pathogen infection, which indicates that CkChn134 may play an important role in response to abiotic and biotic stresses. The CkChn134 protein was located in the extracellular space/cell wall by CkChn134::GFP fusion protein in transgenic Arabidopsis. Furthermore, overexpression of CkChn134 significantly enhanced the resistance of transgenic Arabidopsis against V. dahliae. Interestingly, the coexpression of CkChn134 and CkTLP showed substantially greater protection against the fungal pathogen V. dahliae than either transgene alone. The results suggest that the CkChn134 is a good candidate protein or gene, and it had a potential synergistic effect with CkTLP for contributing to the development of disease-resistant crops.


Asunto(s)
Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Quitinasas/aislamiento & purificación , Quitinasas/farmacología , Cynanchum/química , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/farmacología , Secuencia de Aminoácidos , Antifúngicos/química , Arabidopsis/genética , Arabidopsis/microbiología , Secuencia de Bases , Quitinasas/química , Quitinasas/genética , Cynanchum/genética , Hongos/efectos de los fármacos , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Semillas/química , Semillas/genética , Verticillium/efectos de los fármacos
5.
PLoS One ; 6(2): e16930, 2011 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-21364945

RESUMEN

BACKGROUND: Cynanchum komarovii Al Iljinski is a desert plant that has been used as analgesic, anthelminthic and antidiarrheal, but also as a herbal medicine to treat cholecystitis in people. We have found that the protein extractions from C. komarovii seeds have strong antifungal activity. There is strong interest to develop protein medication and antifungal pesticides from C. komarovii for pharmacological or other uses. METHODOLOGY/PRINCIPAL FINDINGS: An antifungal protein with sequence homology to thaumatin-like proteins (TLPs) was isolated from C. komarovii seeds and named CkTLP. The three-dimensional structure prediction of CkTLP indicated the protein has an acid cleft and a hydrophobic patch. The protein showed antifungal activity against fungal growth of Verticillium dahliae, Fusarium oxysporum, Rhizoctonia solani, Botrytis cinerea and Valsa mali. The full-length cDNA was cloned by RT-PCR and RACE-PCR according to the partial protein sequences obtained by nanoESI-MS/MS. The real-time PCR showed the transcription level of CkTLP had a significant increase under the stress of abscisic acid (ABA), salicylic acid (SA), methyl jasmonate (MeJA), NaCl and drought, which indicates that CkTLP may play an important role in response to abiotic stresses. Histochemical staining showed GUS activity in almost the whole plant, especially in cotyledons, trichomes and vascular tissues of primary root and inflorescences. The CkTLP protein was located in the extracellular space/cell wall by CkTLP::GFP fusion protein in transgenic Arabidopsis. Furthermore, over-expression of CkTLP significantly enhanced the resistance of Arabidopsis against V. dahliae. CONCLUSIONS/SIGNIFICANCE: The results suggest that the CkTLP is a good candidate protein or gene for contributing to the development of disease-resistant crops.


Asunto(s)
Cynanchum/genética , Inmunidad Innata/genética , Micosis/prevención & control , Enfermedades de las Plantas/prevención & control , Proteínas de Plantas/genética , Antifúngicos/análisis , Antifúngicos/aislamiento & purificación , Antifúngicos/metabolismo , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/metabolismo , Clonación Molecular , Cynanchum/química , Cynanchum/metabolismo , ADN Complementario/análisis , ADN Complementario/aislamiento & purificación , Terapia Genética , Micosis/genética , Micosis/inmunología , Enfermedades de las Plantas/genética , Extractos Vegetales/química , Extractos Vegetales/genética , Proteínas de Plantas/análisis , Proteínas de Plantas/aislamiento & purificación , Plantas Modificadas Genéticamente , Semillas/química , Semillas/genética , Semillas/metabolismo , Estrés Fisiológico/genética , Verticillium/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA