Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 112(44): 13591-6, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26438854

RESUMEN

Hydrocarbons are ubiquitous in the ocean, where alkanes such as pentadecane and heptadecane can be found even in waters minimally polluted with crude oil. Populations of hydrocarbon-degrading bacteria, which are responsible for the turnover of these compounds, are also found throughout marine systems, including in unpolluted waters. These observations suggest the existence of an unknown and widespread source of hydrocarbons in the oceans. Here, we report that strains of the two most abundant marine cyanobacteria, Prochlorococcus and Synechococcus, produce and accumulate hydrocarbons, predominantly C15 and C17 alkanes, between 0.022 and 0.368% of dry cell weight. Based on global population sizes and turnover rates, we estimate that these species have the capacity to produce 2-540 pg alkanes per mL per day, which translates into a global ocean yield of ∼ 308-771 million tons of hydrocarbons annually. We also demonstrate that both obligate and facultative marine hydrocarbon-degrading bacteria can consume cyanobacterial alkanes, which likely prevents these hydrocarbons from accumulating in the environment. Our findings implicate cyanobacteria and hydrocarbon degraders as key players in a notable internal hydrocarbon cycle within the upper ocean, where alkanes are continually produced and subsequently consumed within days. Furthermore we show that cyanobacterial alkane production is likely sufficient to sustain populations of hydrocarbon-degrading bacteria, whose abundances can rapidly expand upon localized release of crude oil from natural seepage and human activities.


Asunto(s)
Alcanos/metabolismo , Hidrocarburos/metabolismo , Prochlorococcus/metabolismo , Synechococcus/metabolismo , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Biodegradación Ambiental , Ecosistema , Cromatografía de Gases y Espectrometría de Masas , Humanos , Océanos y Mares , Petróleo , Prochlorococcus/crecimiento & desarrollo , Agua de Mar/química , Agua de Mar/microbiología , Synechococcus/crecimiento & desarrollo
2.
J Biotechnol ; 162(1): 40-9, 2012 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-22789479

RESUMEN

Triacylglycerols (TAGs) from microalgae have the potential to be used for biodiesel, but several technical and economic hurdles have to be overcome. A major challenge is efficient extraction of intracellular TAGs from algae. Here we investigate the use of enzymes to deconstruct algal cell walls/membranes. We describe a rapid and simple assay that can assess the efficacy of different enzyme treatments on TAG-containing algae. By this means crude papain and bromelain were found to be effective in releasing TAGs from the diatom Phaeodactylum tricornutum, most likely because of their cysteine protease activity. Pre-treating algal biomass with crude papain enabled complete extraction of TAGs using heptane/isopropyl alcohol. Heptane as a single solvent was also effective, although complete recovery of TAG was not obtained. Economic implications of these findings are discussed, with the aim to reduce the complexity of, and energy needed in, TAG extraction.


Asunto(s)
Diatomeas/química , Diatomeas/efectos de los fármacos , Papaína/farmacología , Triglicéridos/aislamiento & purificación , Biocombustibles , Inhibidores de Cisteína Proteinasa , Diatomeas/metabolismo , Espacio Intracelular/química , Factores de Tiempo , Triglicéridos/análisis
3.
Gene ; 296(1-2): 45-52, 2002 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-12383502

RESUMEN

Hydrogenases, oxygen-sensitive enzymes that can make hydrogen gas, are key to the function of hydrogen-producing organelles (hydrogenosomes), which occur in anaerobic eukaryotes scattered throughout the eukaryotic tree. All of the eukaryotic enzymes characterized so far are iron-only [Fe] hydrogenases. In contrast, it has previously been suggested that hydrogenosomes of the best-studied anaerobic fungus Neocallimastix frontalis L2 contain an unrelated iron-nickel-selenium [NiFeSe] hydrogenase. We have isolated a gene from strain L2 that encodes a putative protein containing all of the characteristic features of an iron-only [Fe] hydrogenase, including the cysteine residues required for the co-ordination of the unique 'hydrogen cluster'. As is the case for experimentally verified hydrogenosomal matrix enzymes from N. frontalis, the [Fe] hydrogenase encodes a plausible amino terminal extension that resembles mitochondrial targeting signals. Phylogenetic analyses of an expanded [Fe] hydrogenase dataset reveal a complicated picture that is difficult to interpret in the light of current ideas of species relationships. Nevertheless, our analyses cannot reject the hypothesis that the novel [Fe] hydrogenase gene of Neocallimastix is specifically related to other eukaryote [Fe] hydrogenases, and thus ultimately might be traced to the same ancestral source.


Asunto(s)
Hidrogenasas/genética , Proteínas Hierro-Azufre/genética , Neocallimastix/genética , Secuencia de Aminoácidos , Anaerobiosis , Composición de Base , ADN Complementario/química , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Hidrogenasas/química , Proteínas Hierro-Azufre/química , Datos de Secuencia Molecular , Neocallimastix/enzimología , Filogenia , Análisis de Secuencia de ADN , Análisis de Secuencia de Proteína , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA