Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 5245, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37640719

RESUMEN

One challenge for realizing high-efficiency electrocatalysts for CO2 electroreduction is lacking in comprehensive understanding of potential-driven chemical state and dynamic atomic-configuration evolutions. Herein, by using a complementary combination of in situ/operando methods and employing copper single-atom electrocatalyst as a model system, we provide evidence on how the complex interplay among dynamic atomic-configuration, chemical state change and surface coulombic charging determines the resulting product profiles. We further demonstrate an informative indicator of atomic surface charge (φe) for evaluating the CO2RR performance, and validate potential-driven dynamic low-coordinated Cu centers for performing significantly high selectivity and activity toward CO product over the well-known four N-coordinated counterparts. It indicates that the structural reconstruction only involved the dynamic breaking of Cu-N bond is partially reversible, whereas Cu-Cu bond formation is clearly irreversible. For all single-atom electrocatalysts (Cu, Fe and Co), the φe value for efficient CO production has been revealed closely correlated with the configuration transformation to generate dynamic low-coordinated configuration. A universal explication can be concluded that the dynamic low-coordinated configuration is the active form to efficiently catalyze CO2-to-CO conversion.

2.
ACS Cent Sci ; 5(3): 558-568, 2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30937383

RESUMEN

The oxygen evolution reaction (OER) is a key process that enables the storage of renewable energies in the form of chemical fuels. Here, we describe a catalyst that exhibits turnover frequencies higher than state-of-the-art catalysts that operate in alkaline solutions, including the benchmark nickel iron oxide. This new catalyst is easily prepared from readily available and industrially relevant nickel foam, and it is stable for many hours. Operando X-ray absorption spectroscopic data reveal that the catalyst is made of nanoclusters of γ-FeOOH covalently linked to a γ-NiOOH support. According to density functional theory (DFT) computations, this structure may allow a reaction path involving iron as the oxygen evolving center and a nearby terrace O site on the γ-NiOOH support oxide as a hydrogen acceptor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA