Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-30713568

RESUMEN

Multidrug-resistant pathogens are a significant clinical problem. Efflux pump inhibitors (EPIs) can restore the activities of existing antibiotics by interfering with drug efflux pumps located in bacterial cell membranes. Seaweeds are important sources of biologically active metabolites of natural origin; however, their potential as EPIs remains uninvestigated. Here, functional extracts from the brown seaweeds Laminaria japonica and Sargassum horneri and the red seaweeds Gracilaria sp. and Porphyra dentata were evaluated as potential EPIs against drug-resistant Escherichia coli. All these extracts were found to potentiate the activities of drugs in modulation tests, although not to the same extent. Synergistic effects of the extracts and the drug clarithromycin were observed from the onset of Time-kill assays, with no evidence of bacterial regrowth. Ethidium bromide accumulation studies revealed that the efflux decreased in the presence of each extract, as indicated by the presence of EPIs. Most identified EPIs that have been discovered to date have aromatic structures, and the seaweed extracts were found to contain various terpenes, terpenoids, phenolic compounds, indoles, pyrrole derivatives, alkaloids, and halogenated aromatic compounds. Our study highlights the potential of these compounds of the seaweeds as drug EPIs.

2.
J Food Drug Anal ; 24(1): 164-172, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28911400

RESUMEN

The quality and acrylamide content of deep-fried and microwave-puffed shrimp chips fortified with 0.1%, 0.5%, or 1.0% calcium salts (calcium lactate, calcium carbonate, calcium citrate, or calcium acetate) were investigated. Microwave-puffed shrimp chips contained higher amounts of acrylamide (130.43 ppb) than did deep-fried shrimp chips. The greatest mitigation of acrylamide formation in overfried chips was obtained with 0.1% calcium lactate. All browning indexes of fortified shrimp chips, whether deep-fried or microwave-puffed, were reduced. L* values of microwave-puffed shrimp chips were higher than those of deep-fried shrimp chips, whereas a* and b* values and browning indexes were lower. Color differences (ΔE) between deep-fried puffed shrimp chips fortified with calcium salts and a control sample were higher than 5, and the sensory scores of shrimp chips were significantly decreased by the addition of calcium lactate.

3.
Science ; 349(6243): 91-5, 2015 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-26138980

RESUMEN

Selenocysteine (Sec) is translated from the codon UGA, typically a termination signal. Codon duality extends the genetic code; however, the coexistence of two competing UGA-decoding mechanisms immediately compromises proteome fidelity. Selenium availability tunes the reassignment of UGA to Sec. We report a CRL2 ubiquitin ligase-mediated protein quality-control system that specifically eliminates truncated proteins that result from reassignment failures. Exposing the peptide immediately N-terminal to Sec, a CRL2 recognition degron, promotes protein degradation. Sec incorporation destroys the degron, protecting read-through proteins from detection by CRL2. Our findings reveal a coupling between directed translation termination and proteolysis-assisted protein quality control, as well as a cellular strategy to cope with fluctuations in organismal selenium intake.


Asunto(s)
Terminación de la Cadena Péptídica Traduccional/genética , Proteolisis , Proteínas Ligasas SKP Cullina F-box/metabolismo , Selenocisteína/metabolismo , Selenoproteínas/metabolismo , Codón de Terminación , Células HEK293 , Humanos , Selenio/metabolismo , Selenocisteína/genética , Selenoproteínas/genética , Ubiquitina/metabolismo
4.
J Biol Chem ; 282(19): 14262-71, 2007 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-17369256

RESUMEN

Based on the prediction that histone lysine demethylases may contain the JmjC domain, we examined the methylation patterns of five knock-out strains (ecm5Delta, gis1Delta, rph1Delta, jhd1Delta, and jhd2Delta (yjr119cDelta)) of Saccharomyces cerevisiae. Mass spectrometry (MS) analyses of histone H3 showed increased modifications in all mutants except ecm5Delta. High-resolution MS was used to unequivocally differentiate trimethylation from acetylation in various tryptic fragments. The relative abundance of specific fragments indicated that histones K36me3 and K4me3 accumulate in rph1Delta and jhd2Delta strains, respectively, whereas both histone K36me2 and K36me accumulate in gis1Delta and jhd1Delta strains. Analyses performed with strains overexpressing the JmjC proteins yielded changes in methylation patterns that were the reverse of those obtained in the complementary knock-out strains. In vitro enzymatic assays confirmed that the JmjC domain of Rph1 specifically demethylates K36me3 primarily and K36me2 secondarily. Overexpression of RPH1 generated a growth defect in response to UV irradiation. The demethylase activity of Rph1 is responsible for the phenotype. Collectively, in addition to Jhd1, our results identified three novel JmjC domain-containing histone demethylases and their sites of action in budding yeast S. cerevisiae. Furthermore, the methodology described here will be useful for identifying histone demethylases and their target sites in other organisms.


Asunto(s)
Metilación , Oxidorreductasas N-Desmetilantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Acetilación , Secuencia de Aminoácidos , Prueba de Complementación Genética , Histona Demetilasas , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji , Lisina/metabolismo , Espectrometría de Masas , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oxidorreductasas N-Desmetilantes/clasificación , Oxidorreductasas N-Desmetilantes/genética , Fenotipo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/clasificación , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA