Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Nutr ; 9: 840804, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35662923

RESUMEN

Aim: Magnesium supplementation may extend the life span; however, the biological mechanism is still unknown. Leukocyte telomere length (LTL) is a marker of cell aging and biological health in humans. Data concerning whether magnesium supplementation can maintain telomere length, thus prolonging life are limited. We aimed to investigate the association between dietary magnesium intake and LTL in United States middle-aged and elderly adults. Methods: A total of 4,039 United States adults aged ≥ 45 years from National Health and Nutrition Examination Survey (1999-2002). Dietary magnesium intake was collected by a trained interviewer using 24-h dietary recall method and LTL was obtained using the quantitative polymerase chain reaction method. Multiple linear regression analysis was performed to evaluate the crude and adjusted association of dietary magnesium intake with LTL. Results: The overall mean (SD) of LTL was 5.6 (0.6) kp. After adjusting potential confounders, every 1 mg increase in log-transformed dietary magnesium intake was associated with 0.20 kp (95% confidence intervals: 0.05-0.34) longer LTL. Participants with the highest tertile (≥299 mg) of dietary magnesium intake had statistically significant longer LTL (ß = 0.07, P = 0.038) compared with the lowest tertile (<198 mg), with significant linear trends across tertiles. Moreover, the association between dietary magnesium intake and LTL was significantly stronger in participants with higher levels of education (≥high school compared with < high school, P for interaction = 0.002). E-value analysis suggested robustness to unmeasured confounding. Conclusion: Our findings showed that increased dietary magnesium intake was associated with longer LTL, which suggested that magnesium was conducive to a longer life expectancy.

2.
Nat Genet ; 53(8): 1250-1259, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34267370

RESUMEN

Tea is an important global beverage crop and is largely clonally propagated. Despite previous studies on the species, its genetic and evolutionary history deserves further research. Here, we present a haplotype-resolved assembly of an Oolong tea cultivar, Tieguanyin. Analysis of allele-specific expression suggests a potential mechanism in response to mutation load during long-term clonal propagation. Population genomic analysis using 190 Camellia accessions uncovered independent evolutionary histories and parallel domestication in two widely cultivated varieties, var. sinensis and var. assamica. It also revealed extensive intra- and interspecific introgressions contributing to genetic diversity in modern cultivars. Strong signatures of selection were associated with biosynthetic and metabolic pathways that contribute to flavor characteristics as well as genes likely involved in the Green Revolution in the tea industry. Our results offer genetic and molecular insights into the evolutionary history of Camellia sinensis and provide genomic resources to further facilitate gene editing to enhance desirable traits in tea crops.


Asunto(s)
Camellia sinensis/genética , Genoma de Planta , Haplotipos , Proteínas de Plantas/genética , Alelos , Evolución Biológica , Camellia sinensis/metabolismo , Productos Agrícolas/genética , Domesticación , Regulación de la Expresión Génica de las Plantas , Introgresión Genética , Variación Genética , Genética de Población , Filogenia , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA