RESUMEN
Bushen Tiaoxue Granules (BTG) is an empirical Chinese herbal formula that has been used for the treatment of subfertility. The protective effect of BTG on controlled ovarian hyperstimulation (COH)-induced impaired endometrial receptivity has been reported in our previous study. This study aims to explore the mechanisms of BTG on ameliorating abnormal morphology of endometrium based on network pharmacology. Active compounds of BTG were identified via the traditional Chinese medicine systems pharmacology and UPLC-MS technology. The SwissTargetPrediction platform and HERB database were used to screen out the putative targets of BTG. Potential targets of endometrial dysfunction caused by COH were obtained from three GEO databases. Through the STRING database, the protein-protein interaction was carried out according to the cross-common targets of diseases and drugs. GO terms and KEGG pathways enrichment analyses were conducted via the Metascape database. AutoDock Vina was used for docking validation of the affinity between active compounds and potential targets. Finally, in vivo experiments were used to verify the potential mechanisms derived from network pharmacology study. A total of 141 effective ingredients were obtained from TCMSP and nine of which were verified in UPLC-MS. Six genes were selected through the intersection of 534 disease related genes and 165 drug potential targets. Enrichment analyses showed that BTG might reverse endometrial dysfunction by regulating adherens junction and arachidonic acid metabolism. Hematoxylin-eosin staining revealed that BTG ameliorated the loose and edematous status of endometrial epithelium caused by COH. The protein expression of FOXO1A, ß-Catenin and COX-2 was decreased in the COH group, and was up-regulated by BTG. BTG significantly alleviates the edema of endometrial epithelium caused by COH. The mechanisms may be related to adheren junctions and activation of arachidonic acid metabolism. The potential active compounds quercetin, taxifolin, kaempferol, eriodictyol, and isorhamnetin identified from the BTG exhibit marginal cytotoxicity. Both high and low concentrations of kaempferol, eriodictyol, and taxifolin are capable of effectively ameliorating impaired hESC cellular activity.
Asunto(s)
Quempferoles , Farmacología en Red , Femenino , Humanos , Ácido Araquidónico , Cromatografía Liquida , Espectrometría de Masas en Tándem , Endometrio , Simulación del Acoplamiento MolecularRESUMEN
The dietary supplementation of red seaweed-derived polysaccharides has been shown to be beneficial to fish and shellfish aquaculture. However, the function of red seaweed (Gracilaria lemaneiformis)-extracted polysaccharide (GLP) on the health status of rabbitfish (Siganus canaliculatus) is still unknown. This study explored the influences of GLP on growth performance, antioxidant activity, and immunity of rabbitfish. Herein, the fish were fed commercial pelleted feed incorporated with the diverse amount of GLP: 0 (control), 0.10 (GLP0.10), and 0.15 g kg-1 (GLP0.15) for 60 days. The results demonstrated that dietary GLP0.15 significantly elevated FBW and WG, while feed utilization efficiency improved (reduced feed conversion ratio and increased protein efficiency ratio) upon GLP0.10 treatment, regarding the control (P < 0.05). Also, dietary administration of GLP0.15 suggestively improved the serum acid phosphatase and lysozyme activity as well as hepatic total antioxidant capacity, catalase, and superoxide dismutase activity. In contrast, GLP0.15decreased the serum alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, and malonaldehyde activity when compared to the control (P<0.05). Moreover, the lipase (36.08 and 16.46 U/mgprot in GLP0.10 and GLP0.15, respectively) and amylase (0.43 and 0.23 U/mgprot in GLP0.10 and GLP0.15, respectively) activity recorded the maximum values than the control (8.61 and 0.13 U/mgprot, respectively).Further, the intestinal morphometry was developed (such as increased villus length, width, and area) in the fish fed with a GLP-supplemented diet compared to the control. The KEGG pathway analysis unveiled that several differentially expressed genes (DEGs) in control vs. GLP0.10 and control vs. GLP0.15 were associated with metabolic or immune-associated pathways like antigen processing and presentation, phagosome, complement and coagulation cascades, and platelet activation. The DEGs, namely C3, f5, fgb, MHC1, and cfb, were evaluated in control vs. GLP0.10 and C3 and MHC1 in control vs. GLP0.15, suggesting their possible contributions to GLP-regulated immunity. Additionally, the cumulative mortality of rabbitfish after the Vibrio parahaemolyticus challenge was lower in both GLP0.10 (8.88%) and GLP0.15 (11.11%) than in control (33.33%) (P<0.05). Thus, these findings direct the potential use of GLP as an immunostimulant and growth promoter in rabbitfish aquaculture.
Asunto(s)
Gracilaria , Algas Marinas , Animales , Antioxidantes/metabolismo , Sulfatos/farmacología , Inmunidad Innata/genética , Suplementos Dietéticos/análisis , Dieta/veterinaria , Peces/metabolismo , Polisacáridos/farmacología , Alimentación Animal/análisisRESUMEN
OBJECTIVE: To observe the effect of transcutaneous electrical acupoint stimulation (TEAS) combined with electroacupuncture (EA) on rehabilitation after abdominal surgery. METHODS: A total of 320 patients undergoing abdominal surgery were randomly divided into a combination group (80 cases), a TEAS group (80 cases, 1 case discontinued), an EA group (80 cases, 1 case discontinued) and a control group (80 cases, 1 case discontinued). The patients in the control group received enhance recovery after surgery (ERAS) standardized perioperative management. On the basis of the treatment in the control group, the TEAS group was treated with TEAS at Liangmen (ST 21) and Daheng (SP 15); the EA group was treated with EA at Neiguan (PC 6), Hegu (LI 4), Zusanli (ST 36), Shangjuxu (ST 37) and Xiajuxu (ST 39); the combination group was treated with TEAS combined with EA, with continuous wave, 2-5 Hz in frequency, and the intensity was tolerable to the patients, 30 min each time, once a day, from the first day after surgery, until the anus resumed spontaneous defecation and the oral intake of solid food was tolerated. The gastrointestinal-2 (GI-2) time, first exhaust time, first defecation time, first tolerance of oral intake of solid food time, time of first get out of bed and hospital stay were observed in all the groups; the pain visual analogue scale (VAS) score and incidence rates of nausea and vomiting 1, 2, 3 days after surgery were compared in all the groups; after treatment, the acceptability of each treatment was evaluated by patients in each group. RESULTS: Compared with the control group, the GI-2 time, first exhaust time, first defecation time, first tolerance of oral intake of solid food time were shortened (P<0.05), the VAS scores 2, 3 days after surgery were decreased (P<0.05) in the combination group, the TEAS group and the EA group; those in the combination group were shorter and lower than the TEAS group and the EA group (P<0.05). Compared with the control group, the time of hospital stay in the combination group, the TEAS group and the EA group were shortened (P<0.05), and that in the combination group was shorter than the TEAS group (P<0.05). CONCLUSION: TEAS combined with EA can accelerate the recovery of gastrointestinal function in patients after abdominal surgery, relieve postoperative pain, and shorten hospital stay.
Asunto(s)
Electroacupuntura , Estimulación Eléctrica Transcutánea del Nervio , Humanos , Puntos de Acupuntura , Tracto Gastrointestinal , Dolor PostoperatorioRESUMEN
Chemo-photodynamic therapy shows great potential for cancer treatment. However, the rational integration of chemotherapeutic agents and photosensitizers to construct an intelligent nanoplatform with synergistic therapeutic effect is still a great challenge. In this work, curcumin-loaded reduction-responsive prodrug nanoparticles of new indocyanine green (Cur@IR820-ss-PEG) were developed for synergistic cancer chemo-photodynamic therapy. Cur@IR820-ss-PEG exhibit high drug loading content and special worm-like morphology, contributing to their efficient cellular uptake. Due to the presence of the disulfide bond between IR820 and PEG, Cur@IR820-ss-PEG display reduction responsive drug release behaviors. The efficient cellular uptake and reduction triggered drug release of Cur@IR820-ss-PEG lead to their enhanced in vitro cytotoxicity against 4T1cells as compared to the mixture of IR820 and curcumin (IR820/Cur) under laser irradiation. Besides, Cur@IR820-ss-PEG exhibit prolonged blood half-life time, better tumor accumulation and retention, enhanced tumor hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial cell growth factor (VEGF) suppression effect as compared to IR820/Cur. In vivo antitumor activity study, Cur@IR820-ss-PEG effectively inhibit the tumor angiogenesis, which potentiates the PDT efficacy and leads to the best in vivo antitumor effect of Cur@IR820-ss-PEG. This work provides a novel and relatively simple strategy for synergistic cancer chemo-photodynamic therapy.
RESUMEN
Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder among women of reproductive age. Current standard treatment includes lifestyle change, oral pharmacological agents, and surgical modalities. However, the efficacy of current therapies is less than satisfactory. Clinical evidence has shown that acupuncture is effective for regulating hormone levels, promoting ovulation, and attenuating insulin resistance in patients with PCOS. Acupuncture may affect the production of ß-endorphin, which may lead to gonadotropin-releasing hormone secretion and then affect ovulation, menstrual cycle, and fertility. The mechanism of acupuncture for patients with PCOS has not been comprehensively reviewed so far. Better understanding of the mechanisms of acupuncture would help popularize the use of acupuncture therapy for patients with PCOS. In this narrative review, we aimed to overview the potential mechanisms and evidence-based data of acupuncture on PCOS, and analyze the most frequently used acupoints based on animal and clinical studies. The results of this study will contribute to a better understanding of the current situation in this field.
Asunto(s)
Terapia por Acupuntura , Resistencia a la Insulina , Síndrome del Ovario Poliquístico , Humanos , Animales , Femenino , Síndrome del Ovario Poliquístico/terapia , Síndrome del Ovario Poliquístico/etiología , Terapia por Acupuntura/efectos adversos , Terapia por Acupuntura/métodos , OvulaciónRESUMEN
New indocyanine green (IR820) is an indocyanine green analog which has attracted increasing attention in cancer phototherapy for the prominent absorbance at near-infrared region and improved stability. However, the lack of tumor targeting ability is still an obstacle that severely limits the application of IR820. Lactobionic acid (LA) is a ligand for the asialoglycoprotein receptors which are overexpressed on the membrane of hepatocellular carcinoma cells. In this work, three conjugates of LA and IR-820, namely LA-IR820, LA-SS-IR820, and LA-DEG-IR820, were developed for targeted photodynamic therapy of hepatocellular carcinoma (HCC). The in vitro photodynamic effect study shows that LA-IR820, LA-SS-IR820 and LA-DEG-IR820 exhibit similar singlet oxygen quantum yield as compared to free IR820. The cellular uptake study demonstrates that LA-IR820, LA-SS-IR820, and LA-DEG-IR820 exhibit enhanced cellular uptake amount as compared to free IR820 due to the ligand-receptor interactions between LA and asialoglycoprotein receptor overexpressed on the membrane of HepG2 cells. Among these three conjugates, LA-IR820 with hydrodynamic diameter of 154.6 ± 6.1 nm exhibits the highest cellular uptake amount. The cellular reactive oxygen species (ROS) generation study shows that LA-IR820, LA-SS-IR820 and LA-DEG-IR820 display enhanced cellular ROS level as compared to free IR820 and LA-IR820 exhibits the highest cellular ROS level upon 600 mW/cm2 660 nm laser irradiation. As a result, LA-IR820, LA-SS-IR820 and LA-DEG-IR820 exhibit enhanced photocytotoxicity against HepG2 cells as compared to free IR820 and LA-IR820 exhibits the highest photocytotoxicity. LA-IR820, LA-SS-IR820, and LA-DEG-IR820 show significant potential for the targeted photodynamic therapy of HCC.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Verde de Indocianina , Especies Reactivas de Oxígeno , Ligandos , Neoplasias Hepáticas/tratamiento farmacológico , Línea Celular TumoralRESUMEN
Cancer phototherapy has attracted increasing attention for its effectiveness, relatively low side effect, and noninvasiveness. The combination of photothermal therapy (PTT) and photodynamic therapy (PDT) has been shown to exhibit promising prospects in cancer treatment. However, the tumor hypoxia, high level of intracellular glutathione (GSH), and insufficient photosensitizer uptake significantly limit the PDT efficacy. In this work, we combine oxygen supply, GSH depletion, and tumor targeting in one nanoplatform, folate-decorated mesoporous polydopamine nanoparticles (FA-MPPD) co-loaded with new indocyanine green (IR-820) and perfluorooctane (PFO) (IR-820/PFO@FA-MPPD), to overcome the PDT resistance for enhanced cancer PDT/PTT. IR-820/PFO@FA-MPPD exhibit efficient singlet oxygen generation and photothermal effect under 808 nm laser irradiation, GSH-promoted IR-820 release, and efficient cellular uptake, resulting in high intracellular reactive oxygen species (ROS) level under 808 nm laser irradiation and strong photocytotoxicity in vitro. Following intratumoral injection, IR-820/PFO@FA-MPPD can relieve tumor hypoxia sustainably by PFO-mediated oxygen transport and deplete intracellular GSH by the Michael addition reaction, which boost the PDT effect and lead to the most potent antitumor effect upon 808 nm laser irradiation. The multifunctional IR-820/PFO@FA-MPPD developed in this work offer a relatively simple and effective strategy to potentiate PDT for efficient cancer phototherapy.
Asunto(s)
Nanopartículas Multifuncionales , Nanopartículas , Neoplasias , Fotoquimioterapia , Línea Celular Tumoral , Indoles , Neoplasias/terapia , Fármacos Fotosensibilizantes , Fototerapia , PolímerosRESUMEN
Strengthening the compliance is conductive to the quality improvement of clinical trial of acupuncture and moxibustion. In terms to planning behavior and influencing factors of loyalty, the questionnaire was conducted among 200 participants on the compliance of clinical trial on knee osteoarthritis treated with acupuncture. The results showed that the subjective norms and perceptual behavior control of subjects affected their compliance in the trial. Medical service compensation became the primary factor of the subjects' loyalty, which further affected their compliance in the trial. It is suggested that the compliance should be managed according to the characteristics of different clinical researches, and the feasible medical service compensation scheme should be designed in advance by actively focusing on the subjects' features.
Asunto(s)
Terapia por Acupuntura , Moxibustión , Osteoartritis de la Rodilla , Humanos , Osteoartritis de la Rodilla/terapia , Encuestas y CuestionariosRESUMEN
Asthma has become a global health issue, suffering more than 300 million people in the world, which is a heterogeneous disease, usually characterized by chronic airway inflammation and airway hyperreactivity. Combination of inhaled corticosteroids (ICS) and long acting ß-agonists (LABA) can relieve asthma symptoms and reduce the frequency of exacerbations, especially for patients with refractory asthma, but there are limited treatment options for people who do not gain control on combination ICS/LABA. The increase in ICS dose generally provides little additional benefit, and there is an increased risk of side effects. Therefore, therapeutic interventions integrating the use of different agents that focus on different targets are needed to overcome this set of diseases. Some findings suggest autophagy is closely correlated with the severity of asthma through eosinophilic inflammation, and its modulation may provide novel therapeutic approaches for severe allergic asthma. The chinese herbal medicine (CHM) have been demonstrated clinically as potent therapeutic interventions for asthma. Moreover some reports have found that the bioactive components isolated from CHM could modulate autophagy, and exhibit potent Anti-inflammatory activity. These findings have implied the potential for CHMs in asthma or allergic inflammation therapy via the modulation of autophagy. In this review, we discuss the basic pathomechanisms underpinning asthma, and the potential role of CHMs in treating asthma with modulating autophagy.
RESUMEN
Dimethylcurcumin (ASC-J9) is a curcumin analogue capable of inhibiting prostate cancer cell proliferation. The mechanism is associated with the unique role of ASC-J9 in enhancing androgen receptor (AR) degradation. So far, ASC-J9 has been investigated in typical AR-associated diseases such as prostate cancer, benign prostatic hypertrophy, bladder cancer, renal diseases, liver diseases, cardiovascular diseases, cutaneous wound, spinal and bulbar muscular atrophy, ovarian cancer and melanoma, exhibiting great potentials in disease control. In this review, the effects and molecular mechanisms of ASC-J9 on various AR-associated diseases are summarized. Importantly, the effects of ASC-J9 and AR antagonists enzalutamide/bicalutamide on prostate cancer are compared in detail and crucial differences are highlighted. At last, the pharmacological effects of ASC-J9 are summarized and the future applications of ASC-J9 in AR-associated disease control are discussed.
Asunto(s)
Antagonistas de Receptores Androgénicos/uso terapéutico , Curcumina/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Antagonistas de Receptores Androgénicos/química , Antagonistas de Receptores Androgénicos/metabolismo , Antagonistas de Receptores Androgénicos/farmacología , Curcumina/análogos & derivados , Curcumina/metabolismo , Curcumina/farmacología , Humanos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/patología , Neoplasias Renales/radioterapia , Masculino , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/radioterapia , Tolerancia a Radiación , Receptores Androgénicos/química , Receptores Androgénicos/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/radioterapiaRESUMEN
Human infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and there is no cure currently. The 3CL protease (3CLpro) is a highly conserved protease which is indispensable for CoVs replication, and is a promising target for development of broad-spectrum antiviral drugs. In this study we investigated the anti-SARS-CoV-2 potential of Shuanghuanglian preparation, a Chinese traditional patent medicine with a long history for treating respiratory tract infection in China. We showed that either the oral liquid of Shuanghuanglian, the lyophilized powder of Shuanghuanglian for injection or their bioactive components dose-dependently inhibited SARS-CoV-2 3CLpro as well as the replication of SARS-CoV-2 in Vero E6 cells. Baicalin and baicalein, two ingredients of Shuanghuanglian, were characterized as the first noncovalent, nonpeptidomimetic inhibitors of SARS-CoV-2 3CLpro and exhibited potent antiviral activities in a cell-based system. Remarkably, the binding mode of baicalein with SARS-CoV-2 3CLpro determined by X-ray protein crystallography was distinctly different from those of known 3CLpro inhibitors. Baicalein was productively ensconced in the core of the substrate-binding pocket by interacting with two catalytic residues, the crucial S1/S2 subsites and the oxyanion loop, acting as a "shield" in front of the catalytic dyad to effectively prevent substrate access to the catalytic dyad within the active site. Overall, this study provides an example for exploring the in vitro potency of Chinese traditional patent medicines and effectively identifying bioactive ingredients toward a specific target, and gains evidence supporting the in vivo studies of Shuanghuanglian oral liquid as well as two natural products for COVID-19 treatment.
Asunto(s)
Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus , Medicamentos Herbarios Chinos , Flavanonas , Flavonoides , Pandemias , Neumonía Viral , Replicación Viral/efectos de los fármacos , Administración Oral , Animales , Antivirales/química , Antivirales/farmacología , Betacoronavirus/fisiología , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Pruebas de Enzimas , Flavanonas/química , Flavanonas/farmacocinética , Flavonoides/química , Flavonoides/farmacocinética , Humanos , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , SARS-CoV-2 , Células Vero , Replicación Viral/fisiologíaRESUMEN
Soil-plant microbiome plays a critical role in the regulation of terrestrial ecosystem function and service, including biogeochemical cycling and primary production. The lack of knowledge regarding the differences in microbial functional traits, i.e. the functional genes related to carbon (C), nitrogen (N), phosphorus (P) and sulfur (S) cycles, between soil and plant microbiomes hampers our prediction of the terrestrial nutrient cycling processes under the pressure of anthropogenic disturbance. Herein, a quantitative microbial element cycling (QMEC) method and amplicon sequencing was employed to characterize CNPS cycling genes and microbial communities in soil and plant samples collected from peri-urban farmland with high anthropogenic disturbance and forest ecosystem with minimal disturbance. The soil-plant system harbored a diverse array of CNPS cycling genes, which were significantly more abundant in soil than in phyllosphere. The overall CNPS gene profiles in farmland samples was distinct from that of forest samples in both soil and plant phyllosphere. Farmland samples had a lower abundance of CNPS cycling genes than forest samples, indicating that intensive agricultural management practices may consequently compromise the biogeochemical cycling potential of nutrients. Significant positive correlations between the abundance of CNPS cycling genes and microbial diversity were observed in phyllosphere microbiome but not in soil, suggesting that the functional redundancy in soil microbiome may be higher than that of phyllosphere microbiome. Taken together, we provide experimental evidence for the substantial impacts of anthropogenic disturbance on CNPS cycling genes in the soil-plant system and necessitate future efforts to unravel the plant microbiome diversity and functionality under the pressure of global changes.
Asunto(s)
Microbiología del Suelo , Suelo , Bosques , Nitrógeno , FósforoRESUMEN
BACKGROUND: The clinical benefits and safety of Sorafenib versus hepatic arterial infusion chemotherapy (HAIC) for advanced hepatocellular carcinoma (HCC) are inconsistent in some studies. This meta-analysis aims to evaluate the effectiveness and safety of Sorafenib versus HAIC for patients with advanced HCC. METHODS: An electronic search was performed from PubMed, Embase, the Cochrane Library and Web of Science to identify comparative studies evaluating Sorafenib versus HAIC for HCC. Objective response rate, disease control rate, overall survival, progression-free survival and adverse events were evaluated using meta-analytical techniques. RESULTS: Fourteen retrospective studies with 1779 patients (Sorafenib = 773, HAIC = 1006) were included in the meta-analysis. HAIC delivered favorable outcomes in objective response rate (odds ratio 0.13; 95%CI, 0.07-0.24) and disease control rate (odds ratio 0.48; 95%CI 0.26-0.87) assessed by the Response Evaluation Criteria in Solid Tumors. The pooled hazard ratio for overall survival at 0.60 (95% CI 0.39-0.91) and the pooled hazard ratio for progression-free survival at 0.69(95% CI 0.51-0.95), further indicates that HAIC was superior to Sorafenib. There was a higher incidence of adverse events, including hypertension (odds ratio 13.07; 95% CI 2.37-71.67), fatigue (odds ratio 6.72; 95% CI 2.14-21.13), dermatological disorders (odds ratio 15.87; 95% CI 5.58-45.16) and gastrointestinal disorders (odds ratio 3.20; 95% CI 2.02-5.07) in patients receiving Sorafenib than in those receiving HAIC. CONCLUSION: HAIC offers a safe and effective alternative to Sorafenib with better tumor response and longer overall survival and progression-free survival, hence HAIC should be recommended for the patients with advanced HCC.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Infusiones Intraarteriales , Neoplasias Hepáticas/tratamiento farmacológico , Sorafenib/uso terapéutico , Anciano , Anciano de 80 o más Años , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Resultado del TratamientoRESUMEN
Photodynamic therapy (PDT) is a clinically approved cancer treatment which utilizes reactive oxygen species (ROS) to eradicate cancer cells. But the high concentration of GSH inside tumor cells can neutralize the generated ROS during PDT, resulting in an insufficient therapeutic effect. To address this issue, we combined ICG-loaded nanoparticles with PEITC for potent PDT. ICG encapsulated in novel hydroxyethyl starch-oleic acid conjugate (HES-OA) nanoparticles (â¼50 nm) exhibited excellent stability and efficient singlet oxygen generation under laser irradiation, promoted cellular uptake, and enhanced tumor accumulation, whilst PEITC depleted intracellular GSH significantly. As a result, PDT based on ICG-loaded NPs combined with PEITC synergistically suppressed cancer cells both in vitro and in vivo. Potentiating ICG-loaded NPs with PEITC represents a novel and efficient strategy to enhance PDT efficacy.
Asunto(s)
Glutatión/metabolismo , Verde de Indocianina/química , Isotiocianatos/química , Nanopartículas/química , Animales , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Células Hep G2 , Humanos , Derivados de Hidroxietil Almidón/química , Hipertermia Inducida , Isotiocianatos/farmacocinética , Isotiocianatos/uso terapéutico , Rayos Láser , Ratones , Microscopía Confocal , Nanopartículas/toxicidad , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Ácido Oléico/química , Fotoquimioterapia , Especies Reactivas de Oxígeno/metabolismo , Oxígeno Singlete/metabolismo , Distribución TisularRESUMEN
Selective drug release is highly desirable for photothermal/chemo combination therapy when two or even more theranostic agents are encapsulated together within the same nanocarrier. A conventional nanocarrier can hardly achieve this goal. Herein, doxorubicin and indocyanine green (DOX/ICG)-loaded nanocolloidosomes (NCs), with selective drug release, were fabricated as a novel multifunctional theranostic nanoplatform for photothermal/chemo combination therapy. Templating from galactose-functionalized hydroxyethyl starch-polycaprolactone (Gal-HES-PCL) nanoparticles-stabilized Pickering emulsions, the resultant DOX/ICG@Gal-HES-PCL NCs had a diameter of around 140 nm and showed an outstanding tumor-targeting ability, preferable tumor penetration capability, and promotion of photothermal effect. Moreover, these NCs can be used for NIR fluorescence imaging and thus render real-time imaging of solid tumors with high contrast. Collectively, such NCs achieved the best in vivo antitumor efficacy combined with laser irradiation compared with DOX/ICG@HES-PCL NCs and DOX/ICG mixture. These NCs are valuable for active tumor-targeted imaging-guided combination therapy against liver cancer and potentially other diseases.
Asunto(s)
Procesos Fotoquímicos , Terapia Combinada , Doxorrubicina , Liberación de Fármacos , Humanos , Hipertermia Inducida , Neoplasias , FototerapiaRESUMEN
UNLABELLED: Thalamocortical neurons relay sensory and motor information to the neocortex using both single spikes and bursts; bursts prevail during low-vigilance states but also occur during awake behavior. Bursts are suggested to provide an alerting signal to the cortex and enhance stimulus detection, but the synaptic mechanisms underlying these effects are not clear, because the postsynaptic responses of different subtypes of cortical neurons to unitary thalamocortical bursts are mostly unknown. Using optogenetically guided recordings in mouse thalamocortical slices, we achieved the first reported paired intracellular recordings from nine monosynaptically connected thalamic and cortical neurons, including principal cells and two subtypes of inhibitory interneurons, and compared between cortical responses to single thalamocortical spikes and bursts. In 18 additional cortical neurons, we elicited unitary burst responses optogenetically. Short-term dynamics and temporal summation of burst-evoked EPSPs were cell-type dependent: in principal cells and somatostatin-containing (SOM), but not fast-spiking (FS), interneurons, peak response during a burst was on average more than twofold larger than the response to the first spike. Thus, firing a burst instead of a single spike would more than double the probability of firing in postsynaptic excitatory neurons and in SOM, but not FS, interneurons. Consistent with this prediction, FS interneurons held near firing threshold fired most often on the first burst component, whereas SOM interneurons fired only on the second or later components. By increasing excitation of principal cells together with SOM-mediated, distally directed inhibition, thalamocortical bursts could momentarily enhance the saliency of the ascending sensory stimulus over less urgent, top-down inputs. SIGNIFICANCE STATEMENT: Thalamocortical neurons relay sensory and motor information to the cerebral cortex using both single spikes and high-frequency bursts, but the function of bursts is not fully understood. Using brain slices from mouse somatosensory thalamus and cortex, we achieved the first dual recordings of directly connected thalamic and cortical neurons and compared between cortical responses to single thalamic spikes and to bursts. We report that bursts enhanced the responses of excitatory neurons and of inhibitory interneurons that preferentially target dendrites. A potential consequence is that bursts will enhance the response to the immediate sensory event over responses to less urgent, modulatory inputs.
Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Interneuronas/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Potenciales de Acción , Animales , Channelrhodopsins , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/fisiología , Optogenética , Técnicas de Placa-Clamp , Somatostatina/metabolismo , Transmisión Sináptica/fisiologíaRESUMEN
Alkaline pectate lyases have great application potential in the bioscouring of textiles. They are isolated predominantly from bacteria and a few fungi. Here, we report the biochemical characteristics of a novel alkaline pectate lyase PelA from the basidiomycete Volvariella volvacea. The full-length pelA encodes a 321-amino-acid polypeptide containing a putative 18-residue signal peptide and a pectate lyase family 1 catalytic domain. It contains one conserved and one non-conserved potential N-glycosylation site (N-X-S/T) at the residues N95 and N198, respectively. The enzyme showed optimal activity at 60 °C and pH 10, although it was stable between pH 4 and pH 11. Additional Ca(2+) was not required to measure PelA activity in vitro, but it could significantly enhance its activity and thermal stability. The V max values using polygalacturonic acid as substrate were increased from 50.71 to 89.96 IU mg(-1) by the addition of 0.1 mM Ca(2+), whereas the K m values were decreased from 0.681 to 0.514 mg ml(-1). Site-directed mutagenesis revealed PelA has only one N-glycan attached to the residue N95. This N-glycan is crucial to its efficient secretion and activity possibly due to its role in maintaining the secondary structure of PelA. Amino acid substitution at the residue N198 had no effect on PelA secretion, but resulted in a slight (5.16 %) to modest (27.37 %) decrease in specific activity and less thermal stability, indicating the amino acid itself is also important for activity due to it being highly conserved and because of its proximity to the catalytic site.
Asunto(s)
Polisacárido Liasas/aislamiento & purificación , Polisacárido Liasas/metabolismo , Volvariella/enzimología , Sustitución de Aminoácidos , Calcio/metabolismo , Dominio Catalítico , Análisis Mutacional de ADN , ADN de Hongos/química , ADN de Hongos/genética , Activadores de Enzimas/metabolismo , Estabilidad de Enzimas , Glicosilación , Concentración de Iones de Hidrógeno , Cinética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Pectinas/metabolismo , Polisacárido Liasas/química , Polisacárido Liasas/genética , Señales de Clasificación de Proteína , Análisis de Secuencia de ADN , Temperatura , Volvariella/genéticaRESUMEN
This study is designed to evaluate the effects of a herbal composition of Semen Hoveniae, Radix Puerariae and Fructus Schisandrae (SRF) against acute alcoholic intoxication. The animals were treated with SRF extract (SRFE) for 14 days, and ethanol was conducted subsequent to the final treatment. The effects of SRFE on righting reflex, inebriety rates, kinetic parameters of blood ethanol and acetaldehyde were determined. In addition; levels of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), the activities of cytochrome P450 2E1 (CYP2E1), selected antioxidative enzymes, and the contents of malonaldehyde (MDA) were measured. SRFE-pretreated rodents exhibited lower rates of intoxication, longer times to loss of righting reflex, and shortened times to recovery of righting reflex than in controls. The peak concentrations and area under the time-concentration curves were lower in the pretreated animals than in controls, which corresponded to higher levels of ADH and ALDH in both gastrointestines and livers of the SRFE-treated animals. The activities of CYP2E1 were lower in SRFE-pretreated animals, which also exhibited higher activities of some antioxidant enzymes and lower hepatic MDA levels. These findings suggest that the anti-inebriation effects of SRFE may involve inhibition of ethanol absorption, promotion of ethanol metabolism, and enhancing hepatic anti-oxidative functions.
RESUMEN
GABA-releasing cortical interneurons are crucial for the neural transformations underlying sensory perception, providing "feedforward" inhibition that constrains the temporal window for synaptic integration. To mediate feedforward inhibition, inhibitory interneurons need to fire in response to ascending thalamocortical inputs, and most previous studies concluded that ascending inputs activate mainly or solely proximally targeting, parvalbumin-containing "fast-spiking" interneurons. However, when thalamocortical axons fire at frequencies that are likely to occur during natural exploratory behavior, activation of fast-spiking interneurons is rapidly and strongly depressed, implying the paradoxical conclusion that feedforward inhibition is absent when it is most needed. To address this issue, we took advantage of lines of transgenic mice in which either parvalbumin- or somatostatin-containing interneurons express GFP and recorded the responses of interneurons from both subtypes to thalamocortical stimulation in vitro. We report that during thalamocortical activation at behaviorally expected frequencies, fast-spiking interneurons were indeed activated only transiently because of rapid depression of their thalamocortical inputs, but a subset of layer 5 somatostatin-containing interneurons were robustly and persistently activated after a delay, due to the facilitation and temporal summation of their thalamocortical excitatory postsynaptic potentials. Somatostatin-containing interneurons are considered distally targeting. Thus, they are likely to provide delayed dendritic inhibition during exploratory behavior, contributing to the maintenance of a balance between cortical excitation and inhibition while leaving a wide temporal window open for synaptic integration and plasticity in distal dendrites.